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P R E F A C E  

The 1994 Max Born Symposium was the fifth organised by the Inst i tute of The- 
oretical Physics of the University of Wroctaw. Its main topic was, as suggested 
by the title, diffusion. On looking more closely at the phenomenon of diffusion 
we have discovered that  it is omnipresent. Not only do many  branches of physics 
use its concepts, but also it plays a vital role in many  problems in astronomy, 
biology, geology, and even the social sciences! Hence we decided to invite lec- 
turers representing a wide spectrum of points of view on the topic. We have 
asked physicists f rom different specializations - experimentalists, theoreticians, 
and "gamblers",  i.e. the Monte Carlo people. As for non-physicists we have in- 
vited researchers in the domains of biology, astronomy, and geology. We hoped 
tha t  such interdisciplinary talks would prove fruitful for all sides. As is the usual 
fate of such meetings, not all the speakers who had agreed to come were able to 
show up in Kudowa and therefore, e.g., we had no lecture on the role of diffu- 
sion in geology. On the other hand, Michel Droz, who was unable to at tend the 
meeting, was kind enough to send us his lecture. 

The lectures presented in this volume are organised only in two categories 
- invited and contributed talks. Otherwise the order follows the t imetable  of 
the sympos ium with courses on physics intermixed with those on biophysics or 
astronomy. Such an order reflects our belief that  more and more we are coming 
to treat ing science as one body. 

It  is a pleasure to thank all the lecturers, some of them coming a long way, 
for their contribution not only to the scientific program, but also for creating 
a truly warm and friendly atmosphere at the symposium. 

Numerous duties connected with the organization of the symposium have 
been carried out by friends and colleagues from the Insti tute of Theoretical  
Physics of the University of Wroctaw - Dr. Cz. Oleksy, Dr. M. Dudek, Dr. M. Wolf, 
W. Harm, Z. Koza, K. Skwarek, M. Bordzafi, and G. Czarnecki. Their help is 
gratefully acknowledged. 

Our sponsors were first of all the University of Wroctaw, then the Polish 
Academy of Sciences and the Batory Foundation. We thank them all. 

At the end of the book we include the list of the lectures delivered at the 
fourth Max Born Symposium. The proceedings of that  meeting have not been 
published. 

Wroctaw 
September 1994 

Andrzej P~kalski 

Director of the Symposium 
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Selfdiffusion of polymer chains in solutions and 
melts  

K.  B i n d e r  

Institut fiir Physik, Johannes Gutenberg Universit~t Mainz 
D-55099 Mainz, Staudinger Weg 7, Germany 

A b s t r a c t :  Anomalous diffusion of monomers of polymer chains, as well as mo- 
tion of these chains as a whole, is discussed with an emphasis on Monte Carlo 
simulations and simple scaling concepts. While the behavior of isolated chains 
in good solvents or Theta-solvents without excluded volume interactions is fully 
accounted for by the Rouse model, the behavior is less clear both for isolated 
chains in bad solvents and for chains in dense melts. Collapsed chains are shown 
to diffuse as g3(t) - ( [ rCM(t) -  rCM(0)] 2) OCt x3 where the (effective?) exponent 
x3 simply seems to be linearly temperature-dependent for temperatures T lower 
than the O-temperature,  x3 ~ T / O .  A relaxation time r oc N 3 is found, and 
scaling scenarios which possibly can explain these results are developed. 

Short (not entangled!) chains in dense melts also are found to exhibit anoma- 
lous center of mass-diffusion, g3(t) c~ t ~3 with x3 ~ 0.8-0.85,  contrary to expec- 
tations from the Rouse model. Therefore also the crossover from the Rouse-like 
behavior for chain length N less than the entanglement chain length N~ to 
reptation-like behavior for long chains shows some unexpected features. 

Finally we briefly discuss the motion of chains in constrained geometry, such 
as chains constrained in straight tubes and chains end-grafted on a wall in a 
polymer brush. 

1 I n t r o d u c t i o n  a n d  o v e r v i e w  

The Brownian motion of long flexible polymer chains in solution or melts has 
been of long-standing interest and still poses challenging questions [1, 4]. There 
is an interesting interplay between the constraint of chain connectivity and the 
interactions between monomers (and solvent molecules, if present). The geo- 
metrical size of the polymer coil (its gyration radius Rg~r, for instance) scales 
with the number N of subunits ("effective" monomers) of linear dimension b like 
fractal objects [5] 

Rgyr oc b N  ~ (1) 

Here v is a "critical exponent" (if the coil has on the average a spherical shape, 
the volume in d dimensions is oc Rdyr oc N vd and the density p oc N/volume 



K. Binder 

oc N 1-vd ~ N ° in general). The time needed for a coil to renew its configuration 
then also exhibits a law (critical slowing down [6]) 

z' N z r ~  oc Rgy~  c(  , z = v z '  ( 2 )  

where z, z I are dynamic exponents [6, 7]. For times t less than the chain 
relaxation time rN inner monomers of the chain exhibits anomalous diffusion, 
i.e. a subdiffusive increase of the mean square displacement with time, 

gl ( t )  =- ([ri(t) - ri(0)] 2) c< t ~1 , zl  < 1 for t < rN, (3) 

where ri(t) is the position of an inner monomer (far from the free ends of the 
chain) in the d-dimensional space. Sometimes the center of mass of the chain 
exhibits anomalous diffusion as well [9, 10] 

g3(t) - ([r~m(t) - r¢m(0)] 2) oct ~ , x3 < 1 for t < rN.  (4) 

In this paper, we shall consider only the simplest case, which for dilute chains 
with ideal gaussian configurations, for which v = 1/2 in d = 3, reduces to 
the well known Rouse model [4, 11]. I.e., solvent molecules only act as a heat 
bath inducing random conformational changes of the chain, and do not transmit 
hydrodynamic forces (which would yield the Zimm model [4, 12]). While the 
extension of the Rouse model for isolated chains in good solvents (for which 
v ~ 0.588 in d = 3 [13] and v = 3/4 in d = 2 [14] is rather well understood 
[7]-[9], [15, 16], the dynamics of collapsed chains in poor solvents [2], [17]-[19] 
(Fig. 1) still remains a puzzle [9, 10], [20]-[22]. Such problems axe not surprising, 
since the collapsed chains (at temperatures T less than the Theta-temperature 
[2, 17] ~9) are very dense objects with strong interactions among the beads. 

Another case where the dynamics of chains is difficult to understand are dense 
melts, where another length scale dr (the " tube diameter", if the reptation model 
[2]-[4],[23]-[28] is invoked) enters, and several regimes of subdiffusive monomer 
motion with different exponents xl must be distinguished. But the reptation 
picture, where a chain relaxes by a curvilinear diffusion along its own contour, 
has been challenged by various alternative approaches, such as the mode coupling 
theory of entangled polymeric liquids [29, 30]. 

FinMly such additional length scales also must be considered when one dis- 
cusses the motions of chains in constrained geometry, e.g. diffusion of chains 
in straight tubes (Fig. 2) [31, 32] or in polymer brushes (where chain ends are 
restricted to a binding wall, Fig. 3) [34]-[44]. In the latter case the situation 
is particularly complicated, since one must distinguish cases where the end- 
grafted monomer is strictly fixed at the wall and where it is still mobile in 
lateral direction [41], and also the spatial structure in the z-direction is inho- 
mogeneous, due to the gradual decrease of monomer density in the outer region 
of the brush. So several length scales occur (blob size ~(0) = tr -1/2 at the 
wall and ~(h - d f l )  = dfl  near the end of the brush (h is the brush height, 
h oc Rgz c~ ~rl / (~v)- l /2N) ,  chain linear dimension in the directions perpendic- 
ular to the z-direction, Ra± c¢ ~rl /(4v)- l /2N1/2 [43, 44]). Understanding the 
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dynamics of chains in this nonuniform situation is a particular challenge but will 
remain out of detailed consideration here. 

In Sec. 2 we shall now recall more details about the Rouse model for gaus- 
sian coils and its extension including excluded volume. Sec. 3 describes some 
simulation results for the dynamics of collapsed chains, and scaling speculations 
to account for them. Sec. 4 recalls the reptation predictions for meansquare 
displacements in melts and the corresponding evidence from simulations. Al- 
ternative concepts on chain dynamics in this entangled geometry will only be 
briefly mentioned, while Sec. 5 contains some conclusions and comments on the 
dynamics in the constrained geometries (Fig. 2,3). 

2 T h e  R o u s e  m o d e l  f o r  g a u s s i a n  c h a i n s  a n d  in  g o o d  

s o l v e n t s  

Let us model a polymer chain as a sequence of beads at position {R1, R2, ..., RN } 
connected by springs (Fig. 4, [45]). The effective potential energy U is U -- 
(k/2))-'~nN=2(ttn - Rn_I) 2, where k = 3kBT/b  2 because on the coarse-grained 
length scale b entropic forces dominate. 

Assuming that the solvent acts as a heat bath, we obtain the Langevin equa- 
tion [1, 4, 11] 

(d_~tt~t)_w_~" k ( 2 R n - l ~ + l - R , ~ _ l )  q-fn(t), n = 2 , . . . , N - 1  (5) 

where ( is a friction coefficient and fn(t) a random force describing Gaussian 
uncorrelated noise, 

(fn(t)) = 0, (fna(t)fm/3(t '))  = 2(kBTtfnmSaz5(t  - t ' ) .  (6) 

For large N we may neglect effects due to the free ends by using periodic 
boundary conditions along the chain, RN+I -- R1, R0 - RN, and then Eq. (5) 
holds for all n. Due to the translational invariance in the coordinate system along 
the chain we have 

Rn (t) c ( exp ( iQn)  e x p ( - t / v q )  (7) 

where Q is a momentum-type coordinate in the coordinate system along the 
chain, conjugate to the index n labeling the monomers, and the time vQ can be 
written in terms of the rate W - k /~  = 3kBT/b2(  as 

(WrQ)  -1 = 2(i - cosQ) ~ Q2 (Q ~ 0) (8) 

The periodic boundary condition requires Q N  = ~'p,p = 1,2 ... and hence 
we obtain a spectrum of Rouse modes 

T~p~ = W~r2p2/N2 = (3kBT~r21N2()p 2 , p = 1, 2 , . . .  (9) 
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a 

b 

C 

F i g .  1. Snapshot pictures of a well-equilibrated polymer chain with N -- 128 beads, 
using the off-lattice bead-spring model of Sec. 3, after 524000 Monte Carlo steps (MCS) 
per bead, at T --- 0.30(a), T = O -- 0.5S(b) and T = 1.20(c). For each bead, a sphere 
with radius lm~n is drawn (cf. Sec. 3). From Ref. 22. 
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Fig. 2. Snapshot picture of a chain with N = 128 effective monomers confined in a tube 
with quadratic cross section DT × DT with DT = 2/max (cf. Sec. 3 below) for strong 
wall attraction (e /kBT = -3) .  The inner concentric tube with cross section DT × DT 
w i t h  DT = /max has only been drawn to enhance the spatial view of the chain, it has 
no physical effect whatsoever. One can see that the chain winds itself around in an 
irregular fashion along the attractive walls (outer tube),. From Ref. 33. 

Now a distance n along the chain corresponds to a distance bvrff in real 
space, for gaussian random walks. Therefore Q is not conjugate to a distance 
in real space but  ra ther  to (distance) z, and hence Q corresponds to (ql) 2 when 
we consider scattering under wave vector q [46]. This sketchy argument  can be 
substant ia ted by a detailed calculation of the intermediate dynamic scattering 
function 

N N 
1 

S(q, t )  ~ ~ E E ( e x p { i q .  [ R 4 ( t ) -  Rj(O)]}} , 
i = l  j = l  

and one can show tha t  for N -+ oo [46] 

(10) 

with 

S(q , t ) /S (q ,O)  o¢ e x p { - w c ( q ) t } ,  w¢(q)t >> 1 (11) 

 o(q) W(qb) , , '  = 4. (12) 

While for normal  diffusion we(q) = Dq 2 where D is the diffusion constant,  
the dynamic exponent z '  = 4 implies subdiffusive behavior of the monomer  
displacements, Eq. (3), with 

xl  = 1 /2 ,  Pmuse model without excluded volume . (13) 

Of  course, for finite N Eq. (11) only holds for t < tO) ~_ 7"N, while for t > r N 

ordinary diffusion takes over [4] 
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I 
/ 

i , /  
I 

df i  . . . . . . . . .  -7"  c,I/i 

(o )  

(b)  

(c) 

F i g .  3. Schemat ic  i l lustrat ion of the s t ruc ture  of po lymer  brushes, where chains are 
grafted with one end at a repulsive wall (shaded) at a surface coverage a. In a 
good solvent, the chains can be modeled as a sequence of blobs of uniform diame- 
ter  db~ob = a--1/2 (Alexander  [36] picture, part  (a)) or as a sequence of blobs, whose 
d iamete r  $(z)[(b), (c)], also called "screening length" ,  smooth ly  increases unti l  the  size 
d.f~ oc al / (2~'-1)N 1-~" of the last blob [43]. The  gyrat ion radius is very anisotropic,  the 

component  in z -d i rec t ion  scales as Rgz oc o.2"~-½N, while the components  perpendic-  
- L  I 1 2 

ular to the  z -d i rec t ion  scale as Ra± oc ~r 4~ - 2 N / . From Ref. 44. 
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p o $ i t i o n t ~  

Fig. 4. Off-lattice bead-spring model for polymer chains. This model has no excluded 
volume and leads to gaussian chain conformations, R~v~ = b2N/6. Excluded volume is 
incorporated by using the repulsive part of the Lennard-Jones potential between the 
beads. Using a potential with both repulsive and attractive pa~ts, as sketched, one can 
have swollen coils (good solvent) at high temperature and collapsed coils (bad solvent) 
at low temperature. The harmonic or anharmonic forces represent the covalent bonds 
along the chain. From Ref. [45]. 

gl(t) = g3(t) = 6DNt ,t > rg o¢ W - 1 N 2 , D N  = kBT/N~.  (14) 

Note that  Eq. (10) can be understood directly by the simple argument that  
a random displacement of an effective monomer by a distance comparable to b 
(Fig. 4) will lead to a center of gravity displacement biN. Now a sensible choice 
of t ime units is that  every monomer at tempts  such a reorientation at a rate W 
per unit time, and hence we have to add up N such random displacement squares 
N ( b / N ) 2 W  oc kBT / (N~)  which is Eq. (14) if there is no anomalous diffusion, 

x3 = 1, Rouse model , (15) 

cf. Eqs. (4),(14). On the other hand, we may invoke the scaling argument 
that  

2 g l ( r~ )  = g3(rN) oc Rgy r oc b2N ; (16) 

Eq. (16) says that  during the relaxation time rN both an individual monomer 
and the center of mass must have travelled a distance of the order of Rgyr. Since 
we must have g3(t > vlv) = 6Dgt  a smooth matching condition requires also 
g3(rg) (X Dg'rg o( D N W - 1 N  2, which - together with Eq. (16) again yields 
DN oc b2W/N,  i.e. Eq. (14). This scaling argument corroborates the fact that  
in the Rouse model without excluded volume there is no anomalous diffusion of 
the center of mass, i.e. Eq. (15). 
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Fig.  5. Log-log plot gl (t) vs. t for the three-dimensiona] athermal bond fluctuation 
model on the simple cubic lattice, at three volume fractions of occupied lattice sites: 
~5 = 0.025 (topmost data set with offset ordinate axis), ¢ = 0.20 (data points in the 
middle) and • = 0.50 (lower part). Time is measured in units of at tempted moves per 
monomer. Here ~5 _ 0.50 (lower part). Time is measured in units of at tempted moves 
per monomer. Here • = 0.025 corresponds to a dilute and ~5 = 0.20 to a semidilute 
solution, while • = 0.5 corresponds to a concentrated solution or melt. From Ref. [15] 
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Fig.  6. Log-log plot of the center of gravity displacement g3(t) versus time, for the 
three-dimensional bond fluctuation model at various volume fractions ¢ as indicated. 
Numbers at straight lines indicate x3(~5). From Ref. 47. 
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Fig. 7. Log-log plot of the chain relaxation time rl defined from the monomer mean 
square displacement (gl (rl) = (R~y~)) versus chain length N, for three temperatures as 
indicated, for the bead-spring model (Fig. 4c,d) using a Morse potential with e/kB =_ 1. 
Note that T = 0.58 is the O-temperature for this model. From Ref.9. 

If we assume that Eq. (15) holds also in the good solvent case with excluded 
volume, where R2yr oc b2N 2~, Eq. (16) yields 

2 = b2N 2v N 2v+l (17) ll~gyr -~" D N T N  eX ( k B T / N ~ ) r N ,  T N  e:~ , 

i.e. the dynamic exponents z, z' in Eq. (2) are 

z = 2 v +  1,z'  = 2 +  1 / v .  

Dynamic scaling [6] then also implies [32] 

(is) 

xl  = 2 /z '  -- (1 + 1/2i~) -1 ~ 0.54. (19) 

This prediction was tested by simulations [15], see Fig. 5. The data  for the 
dilute case are indeed independent of chain length N for t << ~'N, as it should 
be, and within statistical accuracy compatible with Eq. (19). For the "semidi- 
lute" concentration (where coils have started to overlap and excluded volume is 
Screened at distances larger than the screening length ~(~5) o¢ ¢-v/(dv-1)  [2]) one 
finds a crossover from t °'54 at very short times { where gl(t)  << ~2} to a behavior 
gi(t)  o¢ t 1/2 at intermediate times, as expected from the gaussian coil statistics 
that  takes over at distances exceeding ~(cp). For the densest system (and long 
enough chains) the data for large times fall even systematically below the ideal 
Rouse-like behavior gl(t) c< t 1/2, due to the gradual onset of entanglement ef- 
fects, see Sec. 4. However, over the same time range where gl(t)  o¢ t 1/2 for short 
chains (N = 20) in dense systems there does occur anomalous diffusion, with an 
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effective exponent x3(~) that depends on volume fraction [47], see Fig. 6. Only 
for • ---+ 0 does x3(4~) tend to Eq. (15). The implication is that the Rouse model 
is not strictly valid even for short chains in a melt. 

3 D y n a m i c s  o f  c o l l a p s e d  c h a i n s  

In order to study the dynamics of chains at and below the O-temperature ,  an off- 
lattice bead-spring model of the type of Fig. 4 is used, with a Morse potential, 
UM -~ ( { e x p [ - 2 o t ( r -  rmin) ] - 2 e x p [ - a ( r -  7'min)]} , where the constants  are 
chosen e / k B  = 1, rmin=  0.8 and c~ = 24. The springs are described by a harmonic 
potential in the range from lm~n = 0.4 < l < /m~x = 1.0, U(l )  = K ( l  - lo) 2, with 
lo = 0.7, k = 10, while U(l  </rain) = U( l  >/m~x) = (x). An analysis of the chain 
length dependence of the radii shows that for this model the O- tempera ture  
occurs at O = 0.58 4- 0.01 (typical configurations of the chains are shown in 
Fig. 1). 

Fig. 7 shows a log-log plot of the chain relaxation time TZ defined by g1(~'1) --- 
(R~yr) , which should be of the same order as the Rouse time ~-N discussed in 
See. 2. 

Within statistical errors the exponent z ~ 2.20 in the good solvent regime 
(T = 1.0) and at the O-temperature  (z ~ 2.07) is in agreement with the respec- 
tive theoretical predictions, z = 2u + 1 {Eq. (18)}, using u ~ 0.59 and u = 1/2, 
respectively. However, for T < O (in the regime where the chains are collapsed, 

cf. Fig. 1) a much larger exponent is found, z ~ 3; the scaling relation z = 
2u + 1 does not hold for collapsed chains, at least not in the framework of our 
model, since u = 1/3 for collapsed chains would yield z = 5/3 ~ 1.67 [21]. 

The dramatic failure of the simple Rouse-type scaling {Eq. (18)} is corrobo- 
rated by the observation of a much faster decrease of the diffusion constant with 
chain length (Fig. 8a) and of anomalous diffusion (Fig. 8b). Strangely enough, 
for inner monomers the Rouse behavior {Eqs. (3),(13) = 91 o¢ t 1/~} still seems 
to hold, while the center of mass motion shows clearly subdiffusive behavior, 
with an (effective?) exponent z3 that approximately satisfies the relation 

x3 ( T / o )  , T < o . (20) 

Thus the regime of anomalous diffusion disappears at the O-point!  
A possible explanation of this behavior is found studying the rates for the 

various displacements at fixed temperature as function of chain length [10]. These 
rates seem to decrease with increasing N as power laws, 

g l ( t )  = (Wit) ~1 (x N - u ' U  ~ , t  < rN (21) 

g3(t) = (W3t) ~ 0( N - Y 3 U  3, t < TN , 

and to ensure a smooth crossover we assume 

(22) 

g,(rN) g3(rN) N (23) 
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F i g .  8. a) Log-log plot of the chain diffusion constant DN vs. N for the 
bead-spr ing model of Figs. 1,4c,7 at a temperature T = 0.4 in the region where 
the chains are collapsed. Straight fine indicates an exponent y ~ 2.8 in the re- 
lation DN c( N -y .  From Ref. 9. b) Log-log plot of mean square displacements 
gl,g2 - ( [ r , ( 0 -  r c ~ ( t ) -  ( . ~ ( 0 ) -  rcM(0))]2),g3,~4 - ( I r o n . ( 0 -  *o..(0)]~ilg~ = 
([r~nd(t) -- rcM(t )  -- ( r~d(0)  -- rCM(0))] 2) VS. time, for T = 0.4. HorizontM straight 
line indicates 2 2 (Rgy~), broken line the mean-square end- to  end distance (R~nd)- Slopes 
of straight lines are x~ ~ 0.5 (for g~, g2) but xs ~ 0.72 (for g3) and x~ ~ 0.4 (for 
g4, gh). From Ref. 10. 

For  t>~'fN we mus t  have o rd ina ry  diffusion, gl( t )  ~ g3(t) = 6 D N t  wi th  D N  oc 
N - y .  

These  a s s u m p t i o n s  y ie ld  the  scal ing laws (VN ~ N 2, Eq. (2)) 

Z : (Yl -~- 213)1Xl = (Y3 + 2/3) /X3 = y + 2 /3  (24) 

Not ing  x l  -- 1/2,  Yl ~ 0.7 [10] would imply  z ~ 2.8, while x3 ~ 0.74, Y3 ~ 1.7 
[10] would  imp ly  z ~ 3.2, and  thus  y ~ 2.13 - 2.53. These  e s t ima te s  agree wi th  
the  d i rec t  obse rva t ion  (Figs.  7,8a) only very roughly.  

11 
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A speculative explanation [9, 10] of these results assumes that  either in a 
collapsed chain a net displacement is effected only if a monomer at a surface is 
involved, yielding W1 o((surface/volume) o¢ N -1/3, or - alternatively - that  an 
end monomer must move at the surface {W1 o¢ ( s u r f a c e / v o l u m e ) / g  oc N-4/3}.  
Obviously, the latter assumption is in rough agreement with observation. The 
associated center of mass rate then should be W3 oc W 1 / N  oc N -7/3,  which 
would yield Y3 = 7x3/3 ~ 1.87, again roughly compatible with the observation. 
But it is possible that Eqs. (21)-(24) are too simple, since they assume a single 
regime of subdiffusive motion characterized by a single exponent x3 for the 
center of mass motion for all times t < TN. The data do not really rule out 
several regimes with different exponents, however, and such a behavior with 
several different exponents x3, as it occurs for the motion of entangled chains 
in melts (see Sec. 4). Also it is posssible that the N-dependence described by 
power-laws in Eqs. (21),(22) is spurious, reflecting the fact that  for small N in 
collapsed chains there is not yet a clear division into "surface" and "bulk",  and 
one should note that there are indications that the bulk of collapsed chains is 
in a glass-like frozen state [10]. Also the role of knots (self-entanglements) [20] 
remains to be clarified. More work clearly is required to understand the dynamics 
of collapsed coils! 

4 D y n a m i c s  o f  c h a i n s  i n  d e n s e  m e l t s  

In a dense melt, chains have gaussian random walk-type configurations and since 
in d = 3 the density of one chain inside its volume {p = N / ( v o l u m e )  oc N / R ~ y  r oc 
N / ( b N 1 / 2 )  3 = b - 3 N  -1/2} is much smaller than the melt density (Pm~lt = b-3), 
the volume of a chain contains monomers of N 1/2 other chains: this strong 
entangledness of one chain with many other chains produces an anomalously 
slow relaxation of long chains in melts [1]-[4]. Experimentally this shows up in 
a diffusion constand DN oc N -2 and a melt viscosity (proportional to the chain 
relaxation time "/'N) r/N CX g 3'4 [3] if N >> Ne (the "entanglement" chain length). 
The explanation of these findings has stimulated a longstanding debate [4], [23]- 
[30], [47]-[53]. According to the "tube model" of de Gennes [23] and Edwards [4], 
the net effect of the entanglements among the chains is that on a coarse grained 
scale the motion of the chains is essentially restricted to a diffusion along its own 
contour ("reptation").  The proper length scale for this curvilinear motion is the 
tube diameter tiT, related to N~ via the standard random walk relation, d~, oc 
b2Ne: as long as one considers monomer mean square displacements gl( t )  << d~, 
the entanglements are not yet effective, one observes simple Rouse-like motion. 
Fig. 9a gives a schematic description of the reptation predictions for the mean 
square displacements gl(t) and g3(t), where prefactors of order unity are ignored 
throughout.  When gl( t )  = b2(Wt)  1/2 = d~, = b2N~, i.e. for W t  = Wr~ = 
(dT/b)  4 = N~, one crosses over to a diffusion of the chain along its own contour. 
Since this is again a random walk, a path of length L along this walk corresponds 
only to a distance x/~ in real space. Thus in this regime the displacement of 
monomers increases as gl( t )  = bdT(Wt )  ]/4, and the center of gravity shows 

12 
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anomalous diffusion, 

2 2  
b d T 1/2 (25) g3(t) = = b2(wt) 1/2 
~gyr 

At the Rouse time vR = N 2 / W  = (Rgur/b) 4 the monomer density inside the 
tube is equilibrated, and a normal Rouse-type motion occurs again, but with 
reduced prefactors, 

b4d 2 
g3(t) = ~ ( W ~ ) I  = NN--~b2(Wt) 1 , (26) 

gl(t) = b2eT (wt)  =  b2(wt) (27) 
Rgy~ 

Of course, both the crossover at v~ = N ~ / W  and the crossover at v = vR 
are smooth and spread out over a broad time interval, one does not expect such 
sharp crossovers as drawn in the schematic Fig. 9a for the sake of clarity. It is 
then seen that  Eqs. (26),(28) merge for 

2 if t 7"g N 3 / ( N e W )  6 4 2 . . . .  n. rl(b tiT) ( 2 8 )  gl( t )  ga(t) = Rgyr 

Eqs. (26),(28) thus imply DN oc N -2,rN o( N 3 (the experimental result 
cx N 34 usually is interpreted as an effect of insufficient approach to the asymp- 

totic limit N --+ oo: for N not much larger than N~ additional effects such as 
" tube leakage", fluctuations in tube length etc. are important [4, 26]. However, 
despite considerable efforts (e.g. [25]) a fully convincing microscopic derivation 
of the reptation mechanism does not exist, and possibly different alternative 
theories [29, 30, 50]-[53] could also account for the experimental data. E.g., in 
the mode coupling theory [29, 30] the interpretation of dT is that  of a length 
scale where crossover from simple Rouse dynamics to mode-coupled dynamics 
occurs. As also shown in Fig. 9a, this theory also implies DN oc N -2,  "rN oc N ~ 
and anomalous diffusion is implied at intermediate scales, though with expo- 
nents slightly different from that  of the reptation theory {ga(t) 0( t 9/1a instead 
of t 1/2 = t s/16, and at W t  = cN  s/2 an additional crossover occurs, where c is 
a constant}. Despite this similarity of the results, the mode-coupling approach 
[29, 30] is based on isotropic rather than curvilinear motions of the monomers 
being dominating. 

Simulations [47] do show evidence of two crossovers for both gl( t )  and g3(t) 
{Fig. 9b} but clearly cannot distinguish between the two alternative scenarios 
shown in Fig. 9a. And there is another difficulty, that g3(t) cx t °'s already in the 
Rouse regime and there is n_9_o crossover in g3(t) at t = ~-e, unlike the predictions of 
either reptation or mode coupling theory {Fig. 9a}. This difficulty is not related 
primarily to reptation, since this anomalous diffusion occurs already for short 
nonentangled chains in dense systems (Fig. 6). This implies that  there is already 
a difficulty with the Rouse description for the small scale motion in polymer 
melts. Since both reptation and mode coupling are built on Rouse relaxation 
on small scales, Figs. 6,9b cast doubt on both theories! On the other hand, one 
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a) Schematic description of the t ime-dependent  monomer displacement gl (t) and the 
center of mass displacement g3(t) according to reptation theory (full curves) and the 
mode coupling theory (broken curves). For explanations cL text. 
b) Monte-Carlo results for the mean square displacements gl(t) ,  g3 (t), obtained from 
the athermai bond fluctuation model for N = 200 at a volume fraction • = 0.5 at the 
simple cubic lattice. From Ref. [47]. 
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must be careful and not abandon any of these theories too quickly - numerical 
evaluation of the mode coupling theory [30] shows that  even for N = 105 one has 
smooth crossovers spread out over about 8 decades in time, and clearcut power 
laws cannot yet be distinguished. 

5 Discuss ion 

Evidence from computer simulation suggests that the Rouse-like description 
can be carried over from gaussian chains (O-solvent) to swollen chains (good 
solvents), but  not to collapsed chains (bad solvent). The latter seems to show 
anomalous diffusion of the center of gravity over a broad range of times, and the 
scaling of the diffusion constant and the relaxation time with chain length are 
not understood. While in real experiments, of course, hydrodynamics implies 

Stokes law {DN oc (T]s]Z~gyr) - 1  o( N -1/3 where 7/~ is the solvent viscosity}, at 
the same time one can expect that solvent-mediated hydrodynamic forces are 
screened inside a collapsed coil; so the present treatment should be of interest for 
the actual chain relaxation time VN. Many biological molecules occur in collapsed 
states, and we hope that experimental studies of this problem will come. 

Computer  simulations of chain dynamics in melts now have produced clear 
evidence of an intermediate length scale dT [47, 48], which can be interpreted as 
the tube diameter if reptation theory is invoked. This length scale can Mso be 
seen in the intermediate neutron scattering function [28, 54]-[57], but  probably 
neither experiment [54, 55] nor simulation [56, 57] can rule out the alternative 
mode coupling description [29, 30]. A fundamental difficulty seen in the simu- 
lation, but  not predicted by any theory, is an anomalous diffusion of the center 
of gravity of chains in dense melts, under conditions where the Rouse model is 
expected to hold {Figs. 6, 9b}. We are not aware of any theory explaining this 
behavior, and thus a quantitative comparison between simulation and theory is 
hampered. This strange behavior is neither seen in inner monomer displacement 
{Fig. 9b} nor in the scattering function [54]-[58]: the latter does agree with the 
Rouse model at short times! Thus experimental probes which are sensitive to 
the shor t - t ime behavior of the center of mass-displacement g3(t) in melts would 
be very desirable. 

The different length scales (b, dT, Rgyr) then allow for several characteristic 
times where crossover from one regime to another one occurs: e.g. {Fig. 9a) 
r~ o~ N2/W,  TR o( N2/W,  rn oc N3/(WN~).  Simulations now can see two of 
these crossovers {Fig. 9b} but clearly one would need more decades in time (and 
still longer chains!) for a quantitative analysis: this is hardly possible on present 
day computers. 

Different length scales also occur when we study the dynamics in pores 
(Fig. 2), where the chain is a sequence of "blobs" with a diameter comparable 
to the pore diameter DT, and the longitudinal chain linear dimension (parallel 
to such a straight tube) then is Rg~ oc bN(b/DT) 1/u-1. The time for a chain to 
diffuse its own size then is 

TN ~ Rg~/DN ~ b2NS(b/DT)~/~'-2/W (29) 
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off-lattice bead spring model of Sec. 3 in a straight tube with a square-well attractive 
interaction of strength e and range lm~x/8. The interaction between beads was chosen 
as the repulsive part of a Lennard-Jones interaction with strenght cLj = kBT/IO and 
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while the t ime to equilibrate density fluctuations along the chain is again a 
Rouse time vR oc N 2. These times can be deduced from the t ime-dependent  
displacements g2~(t), g3z(t) in longitudinal direction by defining characteristic 
t imes v~3 , g via (r~3 oc rR, g oc TN) 

(30) 

16 



Selfdiffusion of polymer chains in solutions and melts 

Fig. 10 shows that the expected behavior v3 l o¢ N 2 is indeed verified [33], 
irrespective of the energy of interaction e with the wall of the pore. Also in 
polymer brushes (Fig. 3) two such times vii c< N 3, v± o¢ N 2 can be identified 
[44], related to fluctuations in the longitudinal and perpendicular dimensions of 
the chains in the brush. 

Thus, despite the inhomogeneity of chain configurations in pores (Fig. 2) or 
brushes (Fig. 3), the extension of the Rouse model to these situations seems to 
be rather well understood. Note, however, that only brushes with rather short 
chains where entanglements among the chains are negligible have been considered 
so far [40, 44]. 
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1 I n t r o d u c t i o n  

The study of static (geometric) properties of fractals has by now been widely 
accepted as the proper tool for describing physical objects that  exhibit some 
kind of self-similarity [1, 2]. Lately, a lot of attention has also been devoted to 
the dynamical properties of fractals. This was triggered by some experiments 
in which the energy density of the vibrational states of some supposedly fractal 
polymers played an important role. These excitations were called "fractons" 
by Alexander and Orbach [3], who also pointed out the relation between these 
fractons and other dynamical properties like diffusion and resistivity [4]. 

In this contribution we first briefly review the basic concepts in this do- 
main and the relation between the various dynamical phenomena. Thereafter, 
we discuss two different deterministic fractal structures for which the dynamical 
properties can be studied exactly by an iterative calculation. The first model, 
inspired by numerical studies of diffusion on random walk substrates, will give 
rise to a power-law dynamical behaviour, with fractal dynamical exponents that  
depend in a continuous way on a free parameter of the model. The second model 
leads to a logarithmic time-dependence of the diffusion, instead of a power-law 
behaviour. 

Both examples constitute, in a sense, frontier applications of two important 
paradigms, which, from the start, played a very important role in the field. The 

first one is the use of deterministic hierarchical or fractal lattices to model, at 
least qualitatively, the complicated random self-similarity found in nature [5]. 
The simplifications inherent in such modelling make the application of renor- 
malization group (RG) methods, our second paradigm, natural and feasible. We 
speak here of frontier applications in the sense that  the model calculations that  
we deal with aim at an explanation of quite complicated issues, whose control 
- even numerically - is sometimes at the border of our present computational 
possibilities. In one case, the difficulty of the problem leads us to the neces- 
sity of reconsidering the. standard strategy for extracting information on critical 
behaviour from the RG flow. 

* With acknowledgement for financial support by the I.N.F.M. 
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2 Fractal  Diffusion and Othe r  Dynamica l  P rope r t i e s  

Let us concentrate on a d-dimensional lattice, on which a fractal structure with 
ttausdorff-dimension D is defined (e.g., by deleting from the lattice some specific 
sites and bonds). The diffusion equation describes the time evolution of the 
probability Pi( t )  to find a diffusing particle at site i at time t; it is given by 

0 P i ( t ) ,  (1) ,~ ' P, ( t ) = -5  

where the quasi-Laplacian A ~ is defined as 

A ' P i  = Z ( P j  - Pi)  , (2) 
J 

with j running over the nearest neighbours of site i in the fractal structure. This 
equation is usually studied with the initial condition 

Pi(O) = 8i,o • (3) 

Equation (1) can formally be solved in terms of the eigenfunctions of the A ~- 
operator, obtained (e.g. in an obvious continuous description) from 

( A ' +  E)~E(r)  = 0 .  (4) 

(The presence of some suitable boundary conditions has to be assumed.) The 
solution to the diffusion equation can then be written as 

P(r ,  t) = / d E  p ( E ) ~ ( O ) g t E ( r )  e - s t  . (5) 

p ( E )  represents the spectral density of the AI-operator. This is closely related 
to the vibrational spectrum of the fractal, since the vibrations have in a similar 
way to obey the equation 3 

0 2 Alu(r, t) = ~/~ u(~, t ) .  (8) 

The vibrational modes are described by the same functions ~ ( r )  and they 
correspond to frequencies 0a = vt-E. Since the low frequency spectral density fi(w) 
of phonons behaves on a regular d-dimensional lattice like w d-  1, the spectral or 
fraeton dimension o~ was defined [3] through the relation 

~(~) ~ ~d-1 (~ -+ o) ,  (7) 

which is equivalent to 

p(E) ~ E -1+a/2 (E -+ 0 ) .  

3 The equation actually describes a rather peculiar form of scalar vibrations. 

(8) 
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Using this behaviour in (5) shows us immediately that  the solution to our diffu- 
sion equation has the asymptotic property 

P(O, t )  ,,~ t - J I 2  ( t  ~ oc )  . (9) 

The diffusion of a particle on a fractal structure is usually described in terms 
of the effective dimensionality dw of the random walk problem, through the 
relation 

t ~ R aw with R 2 = (r2(t))  , (10) 

which links the mean square displacement to the diffusion time. Alternatively, 
one can define an exponent v with 

( r 2 ( t ) )  ~ t 2v (v = 1/dw) . (11) 

The exponent dw is not independent from the spectral dimension d; it can 
be argued that  the diffusion probability should behave for large times as 

P ( r , t )  ~ r -D f ( r d ' / t )  , (12) 

where the factor r - D  appears for reasons of normalization. With 

g ( x )  = x - D / d "  f ( x )  , 

this can also be written as 

P ( r , t )  ~ t - D / d "  g ( r d ' / t )  . (13) 

Comparison with (9) then tells us that  

j=2D. 
dw (14) 

This equation allows us to determine the low frequency scaling of the phonon 
spectral density through the asymptotic behaviour of the diffusion for t ~ c~. 

It was soon discovered [5] that  the previously defined exponents are also 
related to the resistivity exponent ~, defined through 

/2(r) ,~ r ~ (r ---+ oc) , (15) 

where ~ ( r )  is the electrical resistance between two points at a distance r on the 
fractal, if the bonds of the fractal structure are replaced by identical resistances. 
On a regular d-dimensional lattice we can estimate ~ ( r )  from the picture that  
between two points A and B at a distance r there exist roughly r d - 1  parallel 
conducting paths of length (and thus of resistivity) r. This leads to the formula 

~2(r)-~ 1 r 1 r2_ a (16) 
o" r d-1 - o" 
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~r is the local conductivity, and this should contain the information about  the 
fractal structure. This quanti ty can be calculated from the Einstein relation as 
a function of the density n and the diffusion coefficient C: 

e 2 

c~ = ~ B T n C .  (17) 

The diffusion coefficient at a distance r on the fractal can be estimated as follows: 

d 
c =  (r2(t))  ~ t ~ (18) 

The density n obviously behaves like 

n ~ r D - d  (19) 

and thus 
~ r D - d ' + ~ - ~  . (20) 

Using this result in (16) gives us 

= dw - D .  (21) 

This relation, which can also be derived from the Green function of the A I- 
operator  [6], provides us with an independent way of determining the dynamical  
exponents through a direct calculation of the exponent ~. 

3 D i f f u s i o n  o n  T w o - d i m e n s i o n a l  R a n d o m  W a l k s  

The diffusion problem on random two-dimensional substrates generated by ran- 
dom walks has led in the literature to some contradictory statements.  It  has been 
claimed [7] that  in this case, since D = d -- 2, the random walk is homogeneous 
in space, and we should therefore have ~ = 0, as in the ~gu l a r  two-dimensional 
lattice. This would lead to dw = 2 or u = 1/2 and hence d = 2. Resistivity calcu- 
lations [8], on the other hand, seemed to favour ~ = 1, hence dw = 3 and d = 4/3. 
This has led the present authors to an extensive numerical s tudy of the diffu- 
sion of a particle during 100 time steps on random walks of 20,000 steps on the 
square lattice [9], which strongly supported the results of the resistivity calcula- 
tions with u = 1/3. These results were contradicted by a calculation [10] of the 
diffusion on N-step random walks in the limit N ---* oo, which led to the result 

1 
u -  ~ ~ 1 / l n N .  (22) 

In order to understand what is going on, one should remember  that  the 
infinite two-dimensional random walk is known to visit all sites of the lattice 
and diffusion on a regular lattice is always described by u = 1/2. The asymp- 
totic t --+ oo behaviour of the diffusion on a finite random walk, on the other 
hand, can only be described by u = 0. This means that  all finite, but eventually 
large, random walks can be described by an effective uefr(t), for which we should 
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thus expect that  it varies from 1/2 for t = 0 to 0 for t --* c~. We believe that  
the dynamical behaviour of a large two-dimensional random walk can be char- 
acterized by three different regimes (either in time or in diffusion length): an 
initial regime, where the normal two-dimensional character is manifested (e.g. 
u = 1/2), an intermediate regime where the true fractal behaviour of the walk 
manifests itself, and a final regime where the limiting boundary of the walk starts 
hindering further diffusion. In this sense, the random walk situation could have 
some resemblance with that  of realistic systems like Silica aerogels[ll], where 
the fractal behaviour is found for lengths L satisfying a << L << ~, where a is an 
atomic length scale and ~ some correlation length. In our case, a would rather 
be the average size of densely filled clusters and instead of ~ we should have the 
average diameter of the random walk. 

It is illuminating to compare the finite random walk with, e.g., finite reali- 
sations of Sierpinsky gaskets. We calculated exactly < r~(t) > on respectively 
the 4-th, 5-th, 6-th and 7-th generation of simple Sierpinsky triangular gaskets 
for times up to t = 1200, starting from an arbitrary interior point. Whereas 
the infinite gasket corresponds to u = In 2 / In  5 ~ 0.43, our numerical study for 
the finite gaskets showed an effective u-exponent fluctuating around the value 
0.43 up to a crossover time t~, which scales with the size R of the system like 
t x ~'~ R 1 / v .  

The situation is quite different in the random walk ease. The diameter of an 
N-step walk is proportionM to ~r~-; if the random walk would be comparable to 
a finite-size fractM with diffusion exponent v = 1/2, we should expect to see a 
rather flat uefr(t) = 1/2 up to t ~ N. We always see, however, that  v drops rather 
sharply to a much lower value on a much shorter time scale. The actual value 
seems to saturate around 1/3 with a rather long flat plateau, although a simple 
log-log analysis is too crude to give an accurate estimate (an alternative estimate 
was given elsewhere[9]). If this is indeed the correct value for u in the fractal 
regime, as we suppose, we should see the crossover to u = 0 appear only at times 
of the order t~ ~ N 3/2. For N = 2,000, e.g., this already means t~ ~ 100,000, 
which is unfortunately too high to study numerically. 

In conclusion, we want to stress that  the results obtained by Manna et al.[10] 
are only relevant for the initial time regime. Indeed, their 100-step blind ant walks 
correspond perhaps to 60-step myopic ant walks, as studied by us; these short 
diffusion times are implemented on very long random walks, up to 640,000 steps 
in their case, to be compared with our 20,000 steps. It is clear that  they are 
in a completely different regime for the t /N-ratio,  i.e. they are testing compact 
regions of the random walk structure. Furthermore, we have extended our Monte 
Carlo diffusions on a 20,000-step random walk up to t = 10,000, confirming in 
a crude log-log analysis the picture of a long flat plateau around 1/3 for the 
//-values. 

In order to obtain an independent confirmation of our result, we have also 
investigated P(0 , t ) ,  the probability for return to the origin during a diffusion 
process, whose behaviour is described by (9). We have therefore generated large 
samples of random walks of varying lengths, and we solved exactly the diffusion 
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equation on their substrates for the occupation probabilities P( r ,  t) for t _< 2000. 
Through los-log calculations we obtain the following results: d = 1.08 for N = 
5,000 and d = 1.18 for N = 20,000 (sample size: 1380). A linear extrapolation 
in 1IN yields d =  1.22, whereas an extrapolation in l / I n N ,  in analogy with 
the calculations of Ref. [10], gives d =  1.30. These results are compatible with 

= 4/3 (or dw = 3) and they rather clearly exclude the value d = 2 (or dw = 2). 

4 Hierarchical Model  with Random Walk Similarities 

In order to understand better the results from our simulations, we tried to con- 
struct a deterministic model of which one could hope that  it possesses the essen- 
tial properties that lead to the anomalous dynamical behaviour as was observed 
in the two-dimensional random walks. We therefore looked at the patterns that  
were formed by some large, but finite, random walks on a regular lattice. These 
patterns seem to be composed of many densely visited regions of various sizes, 
interconnected by narrow pathways. This scheme, moreover, seems to repeat it- 
self over many length scales. Led by these considerations, we have constructed 
in a hierarchical way a fractal structure that  incorporates the same succession 
of dense regions and narrow links, hoping to be able to calculate exactly some 
dynamical properties, like diffusion rate or resistivity, on these fractals. 

In Fig. 1 we present the iterative construction of such a model, in which at 
each step four blocks of the previous step are connected with one another into a 
larger block. Since there is still some variety in the way in which one performs 
these connections, we actually have a class of models. 

b (1) 

D ff, 
II 

b (1) 
II 

If 

f] 
]] 

b (2) b(1) 

f l  

f l  

II 
II 

Fig. 1. Iterative construction of the class of fractal models, depending on a family of 
parameters {b('~) }. 

The links on the structure represent paths along which a particle may diffuse. 
The elementary units of the zeroth step of the structure are squares with some 
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initial transition rate a along the sides and zero transition rate along the diag- 
onal. The links connecting these elementary units may be classified according 
to the order in which they appear in the iterative construction of the fractal. 
We may thus introduce transition rates b (n) with n = 1, 2, 3 , . . .  for this class of 
links. The most simple choice might seem to take b ( ' )  = b = a for all n, which 
would correspond to the problem of a regular lattice with missing links. Keeping 
in mind the pictures of our random walk samples, however, we want to leave 
open the possibility to have longer links between the blocks at higher steps of 
the construction. The essential property of these links should be that  they have 
a smaller transition rate than the bonds of the elementary squares. 

We have solved the diffusion problem on this class of models, characterized 
by the transition rates a and b(n), through a renormalization procedure by dec- 
imation. By this procedure a block, constructed from four unit squares linked 
together, is mapped onto a single square (see Fig. 2), by decimating out 12 from 
the original 16 sites of the block. By repeating this decimation n times, the linear 
size of the blocks is reduced after the n-th step from (2 n - 1) units to (2 '~-1 - 1) 
units, which means that  asymptotically the lengths are rescaled by a factor 2. 

1 5 6 2 

12 

11 

13 14 

16 15 

10 9 

2 

3 

Fig. 2. Scheme for the renormalizatio procedure by decimation for the diffusion equa- 
tions. 

We have numbered the sites of our original block from 1 to 16 in such a 
way that  sites numbered from 1 to 4 are saved by the decimation procedure (see 
Fig. 2). We suppose that  the transition rates for the site occupation probabilities 
inside this block are given by a, b and c (See Fig. 3), where a and b are regular 
nearest neighbour transition rates (the b being equal to b(1) in the first step), 
and c is a diagonal transition rate. On the initial fractal we suppose c = 0, 
but since it acquires a nonzero value through the renormalization procedure, we 
include it in our calculation. Furthermore, sites 1 through 4 may or may not 
have an outgoing link with a transition rate b(n) (with n > 1), depending on 
their position in the fractal. We indicate this transition rate by bl, which must 
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be zero if the link is missing. 

bl b a 5 

"" "] 

...." ..... .. 

12 13 a 

Fig. 3. Transition rates for the diffusion. 

Let Pk(t) indicate the probability for finding the particle at site k at time t. 
These quantities obey the master equation 

dPk = E W k j ( p  j _ Pk) (23) 
"dr 

J 

where Wij = Wji denote the already mentioned transition rates. We define 
Xk(~) as the Laplace transform of the Pk(t). From (3) these Xk(A) obey a set of 
16 equations, which may easily be constructed from Fig. 2. Using the definition 

p = 2a + c ,  (24) 

and denoting with X°(A) the Laplace transform of the occupation probability 
of an external neighbour to site k (k = 1, . . . ,  4), we have, e.g., 

(A + p + bl)X1 = a(X5 + X12) + cX13 + blX ° (25) 

(A + p +  bl)X4 = a(Xlo + Z u )  + eX16 + blX 0 (26) 

(~ + p + b)X5 = a(Xl + X13) + cX12 + bX6 (27) 

(:~ + p + b)x12 = a (x ,  + x ,3 )  + cx5 + bx l l  (28) 

()l -~ p)Xl3 = a ( X 5  -]- X12) + CXl (29) 

(A + p)X16 = a(X1o + Xn) + cX4 (30) 

A straightforward elimination procedure of the functions X5 through X16 can 
always be normalized in such a way that we end up with the original value of a 
in equations such as 

! 0 (A' -4-p' + b~)X1 = a(X~ + X4) + c'X3 A- blXl (31) 
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and analogous equations for X2, X3 and )(4. We defined 

p' = 2a + c' . (32) 

Since a remains constant, we may arbitrarily choose it to be equal to unity from 
now on: a = 1. 

Since we want to study the long time behaviour of these equations, we can re- 
strict ourselves to small values of A, and hence we expand the obtained equations 
in ascending powers of ),. This leads to 

b('~) ' = 7b (n+x) , (33) 

c' = b(1 + c) + O(A) , (34) 
2(1 + e) + b(3 + c) 

A' = 47 A , (35) 

(1 + c) + b(2 + c) + (36) 
7 = b(1 + c) 

One should remark that,  together with their transformation, the b's shift down 
one step in their eventual hierarchy of the {b(")}-values. 

It is immediately clear from (33) that,  if initially all b(~) are equal, they will 
finally be renormalized to infinity, since 7 > 1. In this case, we obtain a fixed 
point 

b* = ~ (37) 

c* = x / ~ -  1 , (38) 

and from (35) follows in this case 

Since each step in the decimation procedure corresponds to a length rescaling 
by a factor 2, we expect from (10) that  this implies a rescaling of the time by a 
factor 2 dw , from which we may infer that  

d w -  ln(,V/~) (40) 
ln2 

Our infinite-b fixed point corresponds then to dw = 2.77 or d = 1.44. 
Another possibility is to start from a model, in which the b(n) are not equal 

to one another, but become smaller with growing n, indicating in this way some 
lengthening of the effective diffusion path along these links. If the hierarchy of 
b00-values is chosen properly, one might obtain any desired finite fixed point 
value for b*. In such cases we have: 

c* = [2(b*)2 + 4b* + 1] 1 / 2 -  b * -  1 
b* + 2 ' (41) 

( ~ ) * _  2(C*+c, 1) (42) 
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In order to obtain these values we should, at least asymptotically for large n, 
have started with a situation where 

b (n) "~ bf  -n (43) 

with 
f = (c* + 1)/2c* . (44) 

From these formulas, it is clear that,  when b* goes from 0 to c~, c* increases 
monotonically from 0 to V ~ -  1 and f from co to 1 + v/2/2. 

If in (43) f is smaller than fe = 1 + v/'2/2, then b always iterates to b* = oo 
and c to c* = v ~ -  1. 

Since our renormalization steps correspond to a rescaling of the lengths by a 
factor 2, we have in general (see Fig. 4) 

2 + l n f / l n 2  (f>_f~) (45) 
dw= 2 + l n f c / l n 2  ( f < f ~ ) .  

This means that  we have a whole class of models with nonuniversal diffusion 
dimensions 2.77 _< dw _< oo. One special case immediately draws our attention. 
The bOO are diffusion strengths on links between clusters with a linear dimension 
2 '~. In realistic fractal structures grown by some random procedures, a good guess 
would be that  links between such clusters would themselves have lengths of the 
order 2 n. This can be modeled in our scheme by making the diffusion strengths 
bOO shrink by factors f = 2. This special and obvious choice leads to the values 
b* = 4, c* = 1/3, (~'/~)* = 8, dw = 3, and it gives us the Alexander-Orbach 
value 0~ = 4/3 [3]. 

Completely independent of the previous renormalization calculation, we have 
also performed [12] an iterative calculation of the electrical resistivity between 
opposing diagonal points of the fractal structure in increasing order of the con- 
struction. For all f ,  these resistivities/2n scale like 2 n~, where ( = dw - 2 with 
dw exactly given by (45). This calculation thus proves that  relation (21) is valid 
for our whole class of models. 

5 A M o d e l  w i t h  L o g a r i t h m i c  T i m e  D e p e n d e n c e  

It has been known for many years that some special models may give rise to 
extremely slow diffusion, such that  (5) has to be replaced with a logarithmic 
time dependence 

R ~ (lnt) k , (46) 

for some value of k. Such behaviour has been demonstrated for a particle on a 
one-dimensional chain, subject at each site to an independent random bias [13]. 
Another mechanism leading to the same behaviour is that  arising in a comb-like 
structure with teeth of variable length, along which a bias field pushes the par- 
ticle towards the tip. A suitable power law distribution of teeth lengths can be 
shown to imply delay times, which make diffusion along the comb basis logarith- 
mic [14]. There is some numerical evidence [15, 16] that  the same combination 

30 



Diffusion on Fractal Substrates 

dw 

3 

2.77 

f~ 2 

Fig. 4. Exponent dw versus rescaling factor f for the diffusion family {b (n) }. 

of dangling ends and a bias field can give rise to a logarithmic behaviour also 
in higher-dimensional models like the infinite incipient cluster of percolation. 
This was recently confirmed by a renormalization group (RG) calculation on 
the hierarchical T-fractal [17], and we will briefly report on these results. The 
calculation is of some methodological interest, since the RG recursion equations 
are singular at the fixed point, such that  the standard analysis for extracting 
the asymptotic behaviour has to be reconsidered. 

The iterative construction of the T-fractal, which has a central site j = 0, is il- 
lustrated in Fig. 5. It is a ramified structure with fractal dimension D = In 3 / In  2. 
The resulting structure, after two iterations, is shown in Fig. 6. 

A diffusing particle hops between nearest neighbour sites of the T-structure 
according to the master equation, equivalent to (1): 

P,(t + r) = P,(t) + y ~  [WoPj(t  ) - WjiPi(t)] , (47) 
iCj 

where the Wij represent the hopping probabilities during time T. It is assumed 
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< > > 
0 

(a) (b) 

Fig .5 .  (a) Starting configuration and (b) iterative step for the construction of the 
T-fractal. 

< 

( t ( < ( 

:> 
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t ) 
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:> 

Fig. 6. T-fractal after two steps in the iterative construction. 

that Wij = W+ or W_, according to whether one goes from j to i following 
the direction of the bond arrows of Fig. 4 or against them. In order to preserve 
positive probabilities, the following relations should be satisfied: 

2W++W_ < 1 

3W+_< 1. 

We will furthermore assume that 

W-- 
W = _< 1, (48) 

w+ 
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which means, as a consequence of the direction of the arrows, that  there is a 
bias, pushing the particle to higher "chemical" distance from the origin. We put 
v = 1, and introduce discrete Laplace transforms [18]: 

oo 

P°(z) = E Pi(n)(1 + z) -1-n • (49) 
n~-O 

This transforms (47) into 

(1 + z)P°(z) - Pi(O) : P°(z) + E [ Wijf'°(z) - WJ'f'°(z)] " 
j#i 

(50) 

With the definitions w = z/W+ and /Sk(w) = W+P°(z), and using the initial 
condition pi(o) = 6i,o, this can also be written as 

- ( ~ ) ~ + ~  P,(~) = ~ ~--~+ 5(~)  + ~,,o • 
j•i W+ ) j#i  

(51) 

Equation (50) actually gives us a(i)  = 1 for all i, but since the RG procedure will 
generate three different values s0, a l  or a3, according to whether i is the origin 
or a site with coordination number 1 or 3, we introduce from the beginning such 
a variable a(i) .  The only parameters entering (51) will thus be ot = (a0, a l ,  a3) 
and W. 

The RG transformation is now performed by eliminating from the equations 
(51) the/Sj  corresponding to sites j introduced at the last step in the iterative 
construction of the T-fractal. This corresponds to performing the inverse of the 
operation illustrated in Fig. 5(b). The sites of the old structure which are not 
decimated have distances reduced by a factor 2, if measured in terms of the new 
lattice spacing. The decimated equations can be expressed in a form similar to 
that  of the original equations, if we use the following renormalized parameters: 

W! 

/ ! 
OZO~ 

/ I 
0:IO.) 

0'/302 / 

~= 

= w ~ (52) 

:(OzoWW3)(o~3w..l_2_.[_W O~lo)W+ W } - 3 W -  3 (53) 

= ( ~ 1 ~  + w ) ( ~  + 2 + w )  - 2 w  - w ~ (54) 

alW + W /5i . (56) 
(~1~ + w ) ( ~  + 2 + w)  - w 

In order to see how the further analysis should be performed, we first consider 
the unbiased case, corresponding to the (unstable!) fixed point W* = 1 of (52). 
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Large t-values correspond to small w, and in the limit w ---+ 0 and W = 1 (53-55) 
become: 

a0 w, 1 = (2c*0 + 3cq + 3c~a)w 

~ ] w '  = (3~1 + a3)w 

~ w '  = (3c~1 + 5~3)w • 

(57) 

(5s) 

(59) 

Under repeated action of such a transformation, the value of wl/w and the vector 
c~ will tend respectively to the largest eigenvalue and the corresponding eigen- 
vector of the matrix 

3 (60) 
3 

Since this largest eigenvalue is 6, and since w plays here the same role as the 
Laplace transform variable ~ introduced for the study of the model (23) in the 
previous section, we can now write in analogy with (40): 

d .  - ln(~' /~)* in 6 
in 2 - In 2 ' (61) 

which describes indeed the unbiased diffusion on the T-fractal [18]. 
If we try to use the same method in the neighbourhood of the second fixed 

point W* = 0, which controls the biased diffusion, we get into trouble since the 
transformation matr ix for c~ now becomes to leading order in W: 

c~%' = 2 ~ .~ (62) 
2/W 

Although there is a regular largest eigenvalue 4, we can not repeat the previous 
analysis since we will never reach a finite a*:  under the renormalization the a0 
and c~3 will for small W at every step be multiplied with larger and larger factors 
(W2") -1. After n iterations, the leading contribution to (~w)(n) can easily be 
estimated from (62) to be of the form 

(O~W) (n) ~ (ao2n/w 2", a12n,632 n / W  2'~) , (63) 

the ai's being suitable constants depending on initial conditions. This means 
that,  if one wants to retain the original form (51) for the diffusion with a fixed 
point value for the vector a ,  one should renormalize the variable w(") not by 
multiplying it with a constant factor at each step as A"w, but in the following 
form: 

w(n) = w2n/W f '  , (64) 

o r  

lnw = ln(w(n)2 -n)  + 2 n l n W  . (65) 
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Simultaneously, the average distance travelled by a diffusing particle renormal- 
izes as 

@{°)} 2-o(R), (66) 
o r  

[lnw[ ln t  
(R) ,~ 2" . . . .  . (67) 

IlnWl IlnWl 

(Remark that  the main contribution to the Laplace transform comes from the 
region of values where wt ,~ 1.) For a more detailed derivation of this result, we 
refer to Reference [17]. 

As anticipated, the singular character of the RG mapping gives rise to loga- 
rithmic diffusion. An extra result is the logarithmic dependence on W, which has 
been conjectured on the basis of numerical evidence or on heuristic arguments 
[16]. 

6 C o n c l u s i o n s  

As anticipated in the introduction, the applications of the dynamical RG dis- 
cussed here have shown how far reaching this method can be for the qualitative 
understanding of very complicated, and sometimes controversial, mechanisms of 
diffusion on fractal structures. The key to success is of course an appropriate 
choice of the hierarchical model on which the RG should be applied. Even if the 
relevance of such results to the corresponding problems on real random fractal 
structures can always be questioned, there is no doubt that the exercise is sug- 
gestive and instructive on its own. For the diffusion phenomena discussed here, 
more realistic models can only be treated by numerical methods, and even then 
with much difficulty. Certainly the analytical insight provided by our toy models 
is of help to our general understanding, by providing simplified but clear mech- 
anisms of explanation. In addition, considering borderline applications can lead 
to interesting methodological spinoffs for the RG strategy itself. The relevant 
example here is our singular RG recursion for logarithmic diffusion. A singular 
transformation, at first sight, seems to contrast with the common wisdom about 
RG strategies. Here we showed that such singular transformation can be han- 
dled within an exact treatment and is the natural mechanism for explaining the 
phenomenon. 
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1 I n t r o d u c t i o n  

The astrophysicists are faced with extremaly broad region of physical conditions 
realized in various objects of the Universe. Even if we limit ourselves to stars, 
physics of the stellar material is not always well understood. The best situation 
is for Main Sequence (MS) stars, where plasma effects due to high (but not very 
high) density and temperature are relatively well elaborated. With the exception 
of free electrons in stellar cores, the velocity distribution functions are not far 
from the maxwellian ones. More precisely, the solution of the Boltzmann equation 
leads to the maxwellian distribution functions if the temperature,  pressure, and 
concentration of chemical elements is exactly uniform in the gas mixture, and if 
there is no external force acting selectively on the gas components. Clearly, such 
conditions are never realized within stars and deviations of the velocity functions 
from the maxwellian distribution should be derived in principle. Basically, these 
deviations are not the same for the various components of the gas mixture which 
leads to diffuse different elements relative to one another. 

The first a t tempt  to recognize the importance of diffusion of chemical ele- 
ments within stars was made by Chapman [5]. In his computat ion of diffusion 
processes, Chapman considered the effects of the pressure and temperature gra- 
dients. He believed that  thermal diffusion oposed gravitational diffusion in stars. 
Eddington [15] pointed out that this was not the case for ionized particles. He 
found that  heavy particles diffuse towards hotter regions, viz. thermal  diffusion 
acts in the same direction as gravitational diffusion. However, at that  t ime the 
general conclusion was that these results were in contradiction with the obser- 
vations of light and heavy elements in the same stars. 

Later, when large chemical anomalies were discovered in some stars, as- 
tronomers came to the idea that these chemical peculiarities could be the result 
of diffusion processes appearing at the surface, cf. Michaud [22], Watson [46] and 
Vauclair and Vauclair [42]. As a basic physical process the atomic diffusion must 
be included in stellar model calculations unless there are more efficient t ransport  
processes that  compete with it and wipe out its effects. Diffusion within stars 
competes with radiative acceleration acting selectively on different elements, 
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meridional circulation, accretion of matter  and mass loss by stellar wind. Per- 
turbations due to other physical effects like turbulence, magnetic fields, etc. have 
also been discussed in literature. In addition to studies of chemical anomalies in 
stars, hello- and astero-seismology offer new powerful methods to test predictions 
of the diffusion and mixing processes in stars. 

The plan of this paper is the following. First, in Sect. 2, we briefly review 
characteristic time scales for a few processes mentioned above. The diffusion 
theory, which is the primary goal of this Conference, is desribed in Sect. 3 in 
a more detailed manner. Next, we confront the model calculations with the 
observations of Main Sequence (MS) stars (Sect. 4), White Dwarf (WD) stars 
(Sect. 5) and Close Binary stars (Sect. 6). Finaly, in Sect. 7 the astrophysical 
context of diffusion is summarised. 

2 O r d e r  o f  M a g n i t u d e  E s t i m a t i o n s  

A diffusion velocity in stars may be estimated by considering a test particle with 
charge el scaterred on field particles with charge e2. The field particle should be 
regarded as an ensemble of (say) electrons and protons. For further simplicity we 
assume that  the average mass per particle of the whole mixture is not different 
from the mass of the test particle, m. As a characteristic collision cross section 
in a fully ionized plasma we can adopt 

= k T  J (1) 

The mean time between collisions is given by 

r = (aNvth) -1, (2) 

where N is the number density of scattering centers and vt~ the mean thermal 
velocity ( kT /m)  1/2. The test particle of mass m is accelerated by gravity g, 
between randomizing collisions. The mean downward velocity is then 

Vdrift = gr = g(kT)3/2ml/2(ele2) -2. (3) 

For quasi static models dp/dr = pg and p = N m  so 

( d P )  (kT)3/2~ ,-2 
Vd~if~ = ~rr ~ t e l e 2 )  (4) 

Applying the last equation to the case of helium in a typical MS star model 
with 1M o leads to diffusion velocities only of the order of 10 -1° cm s -1 at the 
base of the convective zone; thus in 4.5 109 yr (the Sun age) the travelled distance 
would only be of the order of 2 107 cm, a small (0.0003) fraction of the solar 
radius. There are a few factors which make the picture more interesting: thermal 
diffusion enhances the above pressure term, diffusion speads up as the star ages, 
and in certain regions, density and geometric factors combine to yield somewhat 
greater compositional changes than one would estimate from simple scaling laws. 
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Diffusion may operate faster in WD stars due to steeper pressure gradient in 
these objects in comparison with MS stars, cf. Schatzman [34]. Nevertheless, the 
expected diffusion velocity within stars is so small that the question whether 
stellar regions are quiet enough to develope separation of elements immediately 
arises. 

There are several possibilities of mixing of material in stars. Among them 
convection is the most efficient mechanism providing a mixing time scale 

r = ( l / v ) ( R e / 0  2, (5) 

where l and v are mixing length and turbulent velocity of convective blobs,/~c 
is the size of the convective zone. For example, in the solar case the velocity of 
convective blobs can reach about 2 km s - ]  near the surface but  decreases fast 
with depth. Stellar convective zones are highly turbulent and therefore would 
be well mixed. The mixing time scale consists of several years only. Thus the 
atomic diffusion is not able to separate the chemical elements within convective 
zones. 

Von Zeipel [44] demonstrated, however, that a star cannot be in radiative 
equilibrium (it is the case when the convection does not occur and the energy is 
transported to the surface by radiation only) and rotates as a solid body, because 
of the elipsoidal shape of the equipotentials of gravity. Vogt [45], Eddington [16] 
and Sweet [38] suggested that there should be a circulation of mat ter  from the 
hotter  pole to the cooler equator, creating loops of meridional circulations. The 
time scale of this process according to Fricke and Kippenhahn [17] is 

v = 2 r G  < p > W-2TKH, (6) 

where rKH is the thermal time given by 3.1 ]ft7MZ - -  ~-T yr for a star with mass M, ra- 
dius R and luminosity L expressed in solar units, w is the angular velocity, < p > 
is the average density of the star and G - gravitational constant. In the envelopes 
of A and B-type stars the circulation velocity is about v¢ = 10-SV1002 cm s -1,  
where Vloo is the equatorial velocity in units of 100 km s -1. Typical diffusion 
velocity in atmospheres of these stars is Vd = 10 -5 cm s -1. The two above ve- 
locities became comparable for V100 = 1. 

Furthermore, a star with mass M moving through interstellar gas should 
accrete the latter with the rate which can be estimated as: 

riM~dr = l O - 1 5 ( M / M o ) 2 v 6 - 3 n u  [M O yr- ] ] ,  (7) 

where v6 is a relative velocity in units 106 cm s -1 and nH is the number density 
of interstellar gas. Taking into account the fact that the mass of the stellar photo- 
sphere is of the order of 0.5 10 - l °  Mo a star during r = 5 1 0 4 v 6 3 ( M / M o ) - 2 n H  -1 
yr can get a new atmosphere from interstellar gas with its chemistry. Such pos- 
sibility is very real for WD stars since for n H :  1 c m  - 3  and v6 = 3 we have 
v : 100 yr only. 

Finaly, in the absence of calculations from first principles, various phenomeno- 
logical parametrizations of turbulent diffusion coefficients have been proposed to 
evalhate the potential effects of turbulence (Schatzman [35], Vauclair [41]). It is 
often assumed that turbulence wipes out the effects of atomic diffusion. 
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3 T h e  D i f f u s i o n  T h e o r y  

An application of kinetic theory to stellar diffusion problem is described in de- 
tail in the text book by Chapman and Cowling [6]. This approach is based on 
the Chapman-Enckog solution of the Boltzmann equation. Another approach 
arises from the use of velocity moments of the Boltzmann equations, cf. Burgers 
[4]. The second theory (briefly described here) yield a more useful system of 
multicomponent flow equations than the earlier approach. Noerdlinger [28] first 
applied this theory for diffusion of elements within stars investigating the case 
of helium diffusion for the Sun. 

The standard assumptions made in the theory of stellar diffusion are the 
following: 

1. the particles in the gas have approximately Maxwellian velocity distribu- 
tions, 

2. the temperatures are the same for all species of particles, 
3. the mean thermal velocities are much greater than the diffusion velocities, 
4. magnetic fields are unimportant. 
We would like to introduce some definitions and basic equations which are 

essential for our purposes. Each species of particle has a distribution function 
fs(v ,  x, t), mean number density Ns, ionic charge es = zse, mass ms, tempera- 
ture T (here assumed the same for all species s), and mean velocity 

/ vfs dv. (s) Us 

If p is the total mass density and Ps is the partial density ascribed to species s 
then the mean fluid velocity is defined as 

pu  = ~UsPsUs, (9) 

The peculiar velocity cs and drift velocity ws for species s are defined by 

c s = v - u ;  w s = / c s f ~ d v .  (10) 

According to Burgers (cf. also Muchmore [27]) the diffusion equation for 
species s is 

Vps  - - N ,  qsE = K t K s t  rs - rt  • P S V p  w t  w s .  ms ÷ mt  ms + m t  P 
(111 

The heat flow equation for species s, under the same set of assumptions, is 

2 ~ II 5 . m, (ws - - s rs 
N s k V T  = - ~ Z t K s t z s t  ms + m t  

- Z t K s t  3m82 + mt2zlst -~- 0"SmsmtZllst 
+ m )2 rs 

40 



Stellar Diffusion 

_ _ msmt ( 3 + z " s t )  
+ ~'tK~t (m, + mr) ~ rt. (12) 

The subscripts here denote individuM species of particles (Ps is the partiM pres- 
sure for species s). The quantity E is the electric field; k is Boltzmann's constant; 
T is the temperature. The r 's are "residuM heat flow vectors". They are defined 
by 

l [ m ~ ( k T ) - l f f ~ c , e ~ 2 d v - 5 w ~ ]  (13) r s ~  

Transport coefficients appear in the form of the resistance coefficients, K,t, 
z~t, z'.t and z"rs The resistance coefficients K are inversely related to the usual 
diffusion coefficients. In the low-density - weak coupling - limit where the Debye- 
Huckel theory applies, the resistance coefficients become 

2 1/2 
If'st = Kts = -~(2kTpst) NsNt~rst, (14) 

and" 

z = 0.6, (15) 

z ' =  1.3, (16) 

z" = 2. (17) 

In Eq. ( 11 ) #st is the reduced mass for species s and t; cr~t is the collision 
cross-section: 

= (A d. (18) 

A collision process between a pair of particles of type s and t is controlled 
by the "plasma parameter": 

A,t = abs (3kTrD/(eset)), (19) 

where 
rD = [kT/ (4~r~2~N, es2)] 1/2 (20) 

is the Debye length. In a pure hydrogen plasma, the number of particles in a 
sphere of radius r D is A/9. 

The Eqs. (1) and (2) with the steady state conditions of no net mass flow 
with respect to the center of mass 

v2p w  = 0 (21) 

and no electrical current 

VSesw ,  = 0 (22) 

form the system of linear equations which can be solved for w's, r 's  and E. In 
the stellar core Eq. (18) should be modified to allow changes of p, due to nuclear 
burning of elements. 
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4 M a i n  S e q u e n c e  S t a r s  

The chemical composition of most stars is uniform and close to the solar com- 
position. However, about one percent of stars show significant anomalies. Such 
objects are known as Chemically Peculiar (CP) stars. The theory of the chemical 
evolution of stars could explain it. The problem of uniform chemical composi- 
tion for the majority of stars has been solved in the following way. All hydrogen 
and almost all helium have been formed by Big Bang. The rest of the elements 
are produced by massive stars and are returning into interstellar medium by 
supernovae and asymptotic giant branch stars. The interstellar gas is well mixed 
which provides for uniformity of stellar chemistry. 

Knowledge of the helium abundance in stars is of fundamental importance to 
both cosmology and stellar structure theory. The atomic diffusion can alter the 
results of canonical stellar evolution theory, cf. Vauclair et al. [43], Noerdlinger 
[28], Richer at al. [33], Proffitt and Michaud [31] and Proffitt [30]. 

4.1 Hello- andAsteroseismology 

The relationship between pulsations and diffusion has been long debated in the 
case of 5 Scuti stars which are located in the well known instability strip on MS 
and slightly above MS band. The kappa-mechanism acting in the zone with the 
He ++ partial ionization drives pulsations in these stars. However, in the insta- 
bility strip there are also nonpulsating metalic stars (Am) belonging to a broad 
class of Chemically Peculiar (CP) objects. The exclusion between pulsation and 
metallicism is well established. Breger [3] first suggested that this dichotomy 
could be explained by helium diffusion. A star crossing the instability strip in 
the H-R diagram along its evolutionary path, will or will not appear as a vari- 
able star, according to its helium content in the appropriate layers. According 
to Vauclair et al. [43] after a time equal to the helium diffusion time scale the 
second helium convection zone may disappear, which allows characteristic Am 
anomalies to develope. If no helium is left, there is no instability strip anymore. 
Model calculations indicate that the rotation with V~o~ > 100 km s -1 prevents 
the diffusion of helium down (cf. Sect. 2) and such stars can pulsate. This can 
be an explanation of the mentioned above dichotomy among A-type stars. 

Until recently, only a few parameters (age, mass, luminosity, radius, and 
surface heavy-element abundances) were measured for the Sun. I-Ielioseismic ob- 
servations have recently provided a great deal of information about the solar 
interior and place new constrains on the models. Solar p-modes are closely re- 
lated to simple acoustic waves and as such their frequencies depend strongly on 
the sound speed as a function of radius in the interior. This allows the observed 
p-mode frequencies to be inverted to estimate the solar interior sound speed. 
Once the sound speed profile in the solar interior is known, a variety of other 
information can be inferred. The transition between the nearly adiabatic gra- 
dient within the solar convection zone, and the subadiabatic gradient below it, 
leads to a distinct feature in the sound speed profile. It can be used to deter- 
mine the base of the adiabatically stratified region in the Sun, viz. the extend of 
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the convective zone. The variation of the adiabatic exponent in the second He 
ionization zone also leads to a feature in the sound speed that can in principle 
be used to determine the He abundance of the solar convection zone. 

It is interesting to note that while the gravitational setling of He can have 
a large effect on the surface of a star, the He abundance cannot be directly 
measured in F and G stars. Dziembowski, Pamyatnykh and Sienkiewicz [14] 
report that  a study of solar oscillations suggests a value of the solar surface He 
abundance of about 0.23 or 0.24. This is significantly lower than the value of 
the initial He abundance needed to match the solar luminosity (Y= 0.28 or 0.29 
with most current models). 

Christensen-Dalsgaard, Proffitt and Thompson [8], Guzik and Cox [18] and 
Proffitt [30] have made detailed studies of the effects of diffusion on p-mode 
oscillation frequencies. All of these papers show that including diffusion results 
in improved agreement with observations. The surface He abundance suggested 
by Dziembowski et al. [14] is most consistent with the case of pure diffusion 
without turbulence. Effects of heavy-element settling on internal structure of 
the Sun was initiated by Aller and Chapmman [1] and recently reinvestigated by 
Proffitt [30]. Proffitt 's model that includes both He and heavy-element settling 
requires an initial He mass fraction Y = 0.280 and has a surface He abundance 
of Y = 0.251 at the solar age. Unfortunately, the numbers shown here depend 
on the thermodynamic quantities, cf. Kosovichev et al. [21]. The papers cited 
above used the new equation of state recently elaborated by Mihalas, Dappen 
and Hummer [26], which together with the new opacity data (Iglesias et al. [19] 
and Seaton et al. [36]) form the base of the present understanding of plasma 
physics at the densities p < 10 -2 g c m  -3. In particular, these new data result in 
a breakthough in the understanding of 13 Cephei star variability. 

The observed modes in/3 Cephei stars occur in narrow frequency range (the 
periods are about a few hours) and the oscillating spectra are scarce. However, 
in addition to precise frequency measurements, the nonadiabatic observables 
should be regarded as important data for asteroseismology, of. Cugier et al. [10], 
[11]. The name nonadiabatic observables denotes amplitudes ratios and phase 
difference for any pair of oscillating parameters such as light in selected filter, 
colour or radial velocity. A comparison of the diagnostic diagrams in Fig. 1 
reveals a strong dependence on the abundance of chemical elements, as well as 
the choice of the opacity data. A significant difference between the plots obtained 
with the use of the OPAL (Iglesias et al. [19]) and the OP (Seaton et al. [36]) 
opacities demonstrates the usefulness of the two-colour photometry of/3 Cephei 
Stars for testing stellar opacities. 

4.2 C h e m i c a l l y  Pecu l i a r  Stars  

At the region on Main Sequence from about T~I$ = 7000 K to about T e / f  = 

20000 K various kinds of chemically peculiar stars are observed, viz. berylium- 
deficient stars (Be-d), metalic stars of spectral types A and F (Am-Fro), mercury- 
manganese stars (Hg-Mn), magnetic stars of spectral types B and A (Bp-Ap), 
helium weak stars (He-w), helium rich stars (He-R) and helium weak stars with 
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Fig. 1. The colour to light amplitude ratio vs. the phase difference diagrams for the 
Stromgren photometric system. For 1 = 0 modes the lines correspond to the Main 
Sequence part of the evolutionary track where fundamental (pl) and first overtone (P2) 
modes are unstable. The value of stellar mass is given in Me. The data for unstable 
modes with 1 = 1 and 2 in corresponding models are plotted as dots and circles, 
respectively. The stellar models were calculated with the OPAL for two values of Z 
(0.02 and 0.03) and with the OP opacities for Z = 0.02. 

abnormal  I-Ie3/l:Ie 4 isotopic ratio. A recent survey of the general predictions of 
the diffusion theory in  MS stars has been given by Michaud [23]. 

The differential diffusion of heavy elements offers an explanation of the CP 
phenomenon. The competition between radiative acceleration (gR) and grav- 
ity determines whether diffusion leads to over- or underabundances of a given 
element. Selective radiation forces arise through the process of nonisotropic ab- 
sorption and isotropic reemision of photons by the atoms. Both continuum and 
the epectral lines contribute to the radiative acceleration. The contribution of 
the lines is generally much larger than the contribution of the continuum. 

Surface abundances for He, Li and Mn predicted for non-rotat ing stars are 
shown in Fig. 2a. As one can see, there is settling by a factor of order two for 
Li and He and 1.5 for Mn around 6000 K. As the Tef.f increases, the settling 
increases for both  Li and He, the Li gap appearing within about  150 K of the 
Te]/ near 6800 K. As the T~]] further increases, the Li abundance is the largest 
around 7050 K. I t  decreases again at higher Tey]. The Mn abundance increases 
considerably for TeL f > 7000 K, the Am star domain. I t  is even larger for 
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Fig. 2. (a). Expected abundances of He, Li and Mn as a function of T~lf in Main Se- 
quence evolutionary models at half of the MS life time. The expected abundance is in 
the logarithmic scale relative to the original abundance. Atomic diffusion is included. 
(b). The same as panel (a) but in the presence of a mass loss rate of 10 -15 M 0 yr -1. 
(c). The same as panel (a) but in the presence of meridional circulation, for an equa- 
torial rotation velocity of 50 km s -1. 

Tel$ > 10000 K, where t lgMn stars are observed. Large overabundances, at 
least by two orders of magnitude are predicted for heaviest elements such as 
earth and iron peak elements. The anomalies are predicted to be much larger 
than  observed for most elements; other phenomena must complete with diffusion 
to lead to the observed anomalies. 

The effect of mass loss in A stars has been modeled by Michaud and Charland 
[25]. A mass loss rate of 3 10 -16 to 10 -15 M®yr -1 reduces the overabundances 
to observed values in A m F m  stars for iron peak elements as well as rare earths 
without  perturbing the agreement for underabundant  elements. Expected abun- 
dances of He, Li and Mn in the presence of diffusion and mass loss are shown in 
Fig. 2b. 

The  mixing of stellar material  by the meridional circulations can prevent the 
diffusional settling of elements. Only atmospheres of slow rotat ing A and B type 
stars are quiet enough to make diffusion efficient in agreement with observations 
of Am, Ap, t tgMn stars. Figure 2c illustrates model predictions for the equatorial 
velocity of rotat ion equal to 50 km s -1,  cf. also Charbonneau and Michaud [7] 
where detailed model calculations are given. 

Among observed objects, mercury-manganese stars probably represent the 
closer approach to the ideal situation of pure diffusion in stellar atmospheres.  
These stars are hot enough to have no outer convection zone, they have no 
observed magnetic field and a small rotational velocities. The results of detailed 
calculations generally agree with the observations. The V sin i at  which the 

45 



Henryk Cugier 

HgMn and AmFm phenomena disappear give an argument in favour of the 
meridional circulation process. 

The Am stars are CP stars located at the cool end of this zone, without 
strong organized magnetic fields. The chemical analysis of Am stars have re- 
vealed a number of anomalies. For instance Lithium is found either with the 
standard cosmic abundance, or underabundant. It is never strongly overabun- 
dant, contrary to what the diffusion theory predicts in absence of mass-loss or 
turbulent mixing. The three elements C, N and O are deficient in Am stars. The 
deficiency is clearly marked for the coolest Am stars and decreases to nothing 
for the hottest ones. The Aluminium and Iron abundances are only moderately 
enhanced with respect to normal late A stars. The overabundances found for the 
rare-earths are of the order of a factor 20. Quite interesting is the fact that  the 
overabundance factor is very uniform, and preserves the odd-even effect present 
in the sun and is predicted by the theory of the s-process. 

The helium deficiency observed in most chemically peculiar stars is naturally 
explained by diffusion: the cosmic helium abundance is so large that  the radiation 
force is not able to support it in stellar atmospheres. The helium-deficient stars 
with large He3/He 4 are also well explained by diffusion. During diffusion process 
He 3 slowly replaces He 4 as a result of their mass difference. MS helium-rich stars 
may be explained by mass loss or magnetic fields coupled with diffusion. 

Barium stars exhibit overabundances of barium and of other s-process ele- 
ments relative to Fe as well as a correlation between carbon and the s-process 
element abundances. Most of barium stars are giants and all or almost all of 
them have a degenerate dwarf companion. An attractive explanation for the 
barium syndrome origin is the accretion of the nuclear processed material from 
white dwarf companion. 

4.3 P r o b l e m  o f  L i t h i u m  in MS S ta r s  

Observations of Li has promoted the development of a great variety of models 
invoking transport processes in the outermost layers of these stars (e.g., micro- 
scopic diffusion, turbulent diffusion, meridional circulation, mass loss). In stellar 
interiors Lthium (an Bryllium) nuclei ar destroyed at relatively low temperatures 
(about 2.5 106 and 3.5 ]06 K, respectively). In low MS stars, these temperatures 
are reached slightly below the base of the convective zone or inside the convective 
zone. Therefore, the processes which transport mat ter  between the outermost 
layers and regions of the stellar interior may cause affect the contents of Li and 
Be in the atmospheric layers. Figure 3 compiles Li abundances measurements for 
F and later stars in the Pleiades (circles) and Hyades (asterisks) stars. These two 
clusters are different in age: 6 - 7 107 yr and 7.6 10 s yr = 0.76 Gyr for Pleiades 
and Hyades, respectively. A comparision of these two clusters reveals important  
differences. For stars with Tel/ > 6300 K the abundance of Li in Pleiades is 
virtually constant and close to the value of log N(Li) = 3.3. In the Hyades, how- 
ever, note the  strong absence of Li at the temperature range between 6500 and 
6900 K. This effect ( 'L i  gap") was discovered by Boesgaard and Tripicco [2]. For 
stars with Tell < 6300 K, there is a trend to lower abundances with decreasing 
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Fig. 3. Li measurements in Pleiades (circles) and Hyades (asterisks) stars. Open circles 
indicate upper limits. 

the effective temperature. The Li gap was confirmed in other clustes, viz. NGC 
752 (age 1.7 Gyr), Coma Serenices (0.5 Gyr), Ursa Major Group (0.3 Gyr) and 
Prasepe (0.7 Gyr). Clearly, Li abundance depends markedly on a stellar age but 
other stellar parameters may also be important including metalicity, rotation 
velocity and others. Measurements in their present state do not allow to estab- 
lish definitive conclusions on which process is the most important in controlling 
the observed behaviour of Li abundances in F-M stars. Recent reviews on the 
problem of Li in MS stars can be found in Michaud and Charbonneau [24] and 
Rebolo [32]. 

5 White Dwarf Stars 
Relative to "normal stars" these objects are characterized by small radii, high 
densities and strong surface gravity. Typical values for white dwarfs (WD) are 
/~ : 10 -2 RQ, p : 106 g c m  -3 and 9 = 10 s cm s -2. Their configuration is sup- 
ported against the large gravity by the pressure of highly degenerate electrons. In 
very interior of a WD, the degenerate electrons provide a high thermal conduc- 
tivity, which (together with small luminosity) does not allow large temperature 
gradients. The situation is different when going to the outermost layers. With  
decreasing p we expect to find a non-degenerate outher layer with heat transfer 
controled by radiation or convection. 

Most white dwarfs have surface convection zones. Velocities of convective 
elements may be as large as several km s -1, while diffusion velocities are orders 
of magnitude smaller. Thus diffusion will only operate to separate material in 
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deeper layers but the chemical composition changes produced in these layers will 
next propagate through the convection zone up to the stellar surface. The results 
of detailed model calculations (cf. Muchmore [27]) indicate that if a WD forms 
with the atmosphere consisting partly of hydrogen and partly of helium, the 
hydrogen and helium should rapidly separate. For instance helium is depleted 
from the atmosphere of a hydrogen-rich WD stars with T~.r/ = 12000 K in only 
10 yr. Metals settle out of the atmosphere in 104 yr or less. In the case of helium 
WD stars hydrogen diffuses upward, while iron and other elements considered 
diffuse downward. Generally, model calculations indicate that iron diffuses most 
rapidly and carbon most slowly. The diffusion time scales for the separation of 
metals out of the atmospheres are 106 - 10 s yr depending on the star's mass. 

There are two time scales for changes in the structure of a white dwarf: a time 
scale for cooling and a time scale for changes in the atmospheric opacity. In a 
typical case, diffusion time scales are much shorter than evolutionary time scales. 
Any metals originally in the atmospheres of white dwarfs must have sunk out 
of sight long ago. The metals presently seen in the atmospheres of some white 
dwarfs cannot be original to these stars. One hypothesis to account for their 
presence is that accretion from the interstellar medium continually supplies an 
influx of metals onto the star. The scenario of a competition between diffusion 
and accretion to explain the composition of white dwarfs makes a variety of 
predictions about the relative abundances of different elements. 

In WD stars diffusion generally occurs in a sufficiently dense gas that the 
usual treatment of the diffusion coefficients is not valid. In particular the elec- 
trons may be weakly degenerate and pressure ionization effects are likely to be 
important. Neither the weak coupling approximation nor the strong coupling 
approximation is valid. Uncertain pressure ionization effects are likely to be im- 
portant. 

6 C l o s e  B i n a r y  S t a r s  

In the case of a single star, it is necessary to mix the unevolved envelope matter 
with the matter from the deep interiors of stars or to lose the external envelope 
with unprocessed matter to get the chemically evolved matter from the deep 
interiors on the stellar surface. In the case of close binary systems, however, 
large-scale transfer of mass from one component to the other is the most basic 
phenomenon in their evolution, cf. e.g., Paczynski [29]. When a sufficiently large 
fraction of mass is lost by the originally more massive star, substantial changes in 
the surface relative abundances of H, He, C, N and O because of the CNO cycle 

12 14 are expected. A carbon ( C )  deficiency and nitrogen ( N )  enrichment may be 
observed in classical Algo~type stars even if the mass loss does not expose very 
deep layers with H, He and O anomalies. This is caused by the fact that the CN 
part of the CNO cycle in massive stars takes place above the convective core. In 
particular the mass-losing secondary in Algol itself (fl Persei) should be stripped 
down to layers with Mr < 0.36 of the original mass. The chemical composition of 
these layers was radically changed prior to the start of mass transfer and carbon 
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depletion as large as 2.0 dex. may be expected, cf. Cugier and Hardorp [12]. The 
mass transfer from the secondary component to the primary one means that  
any C poorness of the secondary's surface material will also he reflected in the 
primary star. 

The carbon abundance analysis for the primaries of eight Algol-type stars 
was made by Cugier and Hardorp [12] and Cugier [9]. They found that  observed 
abundances of C 12 are in fact clearly lower than the solar value, but markedly 
larger than the expected ones. In order to explain this discrepancy Cugier and 
Hardorp suggested that  a large-scale mixing of matter occurs in these stars. One 
of the possibilities is a thermohaline mixing of matter due to an inversion of the 
mean molecular weight developed in a mass accreting star receiving helium-rich 
matter  from the companion, cf. De Greve and Cugier [13]. This behaviour of C 1~ 
in Algols was luther confirmed both observationaly by Tomkin et al. [39] and 
theoretically by Sarna [33]. 

It is interesting to note that the term termohaline convection was introduced 
by Stern [37] who considered the situation in which a layer of warm salt water 
is above a layer of fresh cold water of slightly higher density. When the hot salt 
water is cooling off then its density becomes higher than the fresh water's one 
and an istability developes. Experiments show that it leads to the formation 
of fingers with the salt water which sink down. A blob of matter with higher 
molecular weight, # + A#, immersed in a region with molecular weight # was 
considered by Ulrich [40] and Kippenhahn et al. [20]. Such a blob sinks with 
the velocity v,  and after a path-length L the blob is destroyed and mixed with 
the surroundings. It can be described as a "diffusion process" with a "diffusion 
coefficient" D = v,L. 

7 S u m m a r y  

This review is dedicated to the astrophysical context of diffusion processes. In 
particular, atomic diffusion as a basic physical process must be included in stellar 
model calculations unless there are more efficient transport processes that  wipe 
out its effects. Diffusion within stars does not develope in convective zones. In 
radiative equlibrium regions diffusion competes with radiative acceleration act- 
ing selectively on different elements, meridionM circulation, accretion of matter,  
mass loss by stellar wind, turbulence and magnetic fields. 

Almost ideal situation of pure diffusion in stellar atmospheres is probably 
realized in mercury-manganese stars. The helium deficiency observed in most 
chemically peculiar stars is also naturally explained by diffusion. Highly mo- 
noelemental atmosphere of white dwarf stars reflects the efficiency of diffusion 
in the case when steep pressure gradients are developed. On the other hand, the 
situation is not clear for a long searched problem of Li abundance in stars. Mea- 
surements in their present state do not allow to establish definitive conclusions 
on which process is the most important in controlling the observed behaviour of 
Li. 
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In addition to studies of chemical anomalies in stars, helio- and asteroseis- 
mology offer powerful methods to test theoretical predictions. The solar p-mode 
oscillations suit this purpose best. A recent theoretical discovery that  the usual 
opacity mechanism acting in the zone with temperature  close to 2 105 K due to 
a large number of Fe lines is responsible for oscillations observed in fl Cephei 
stars should draw attention as a new constrain on stellar diffusion in early type 
stars. 

Classical Algol-type binaries should also be regarded as stars where mixing 
and diffusion processes effectively take place. 
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A d s o r b e d  Layers 
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Abs t rac t :  We present and discuss a collection of experimental data illustrating 
effects of lateral interactions on surface diffusion of adsorbed particles which 
proceeds in a concentration gradient. 

1 I n t r o d u c t i o n  

Atoms and molecules adsorbed on solid surfaces are known to produce a multi- 
tude of two-dimensional (2D) structures whose symmetry in the ordered state 
is determined by the symmetry of the substrate surface and by lateral inter- 
actions between the adsorbed particles. For a given adsorbate/substrate system 
one usually observes a number of (2D) phases corresponding to various adsorbate 
concentrations (coverages) and temperatures (for a review see e.g. [1]). There- 
fore, if surface diffusion proceeds in a concentration gradient, it should generally 
be accompanied by formation of 2D phases in the diffusion zone. In turn, this 
process should affect the kinetics of surface diffusion, which is evident from the 
relationship 

J = - L V # ,  (1) 

where J is the diffusion flux, L the transport coefficient and V# the chemical 
potential gradient, all the values being concentration dependent. Lateral repul- 
Sion should promote the spreading of adsorbed particles (adparticles) whereas 
lateral attraction should impede it and, when sufficiently strong, may even cause 
an uphill diffusion. These considerations are quite general and were established 
previously in theoretical and experimental studies of volume diffusion (see e.g. 
[2]). Contrary to this, investigations of multiphase surface diffusion were started 
only comparatively recently, since it was necessary to elaborate the appropriate 
experimental techniques. 

There are a few experimental possibilities to get insight into effects of lateral 
interactions on surface diffusion. One can follow the correlated walks of indi- 
vidual atoms [3, 4], the density fluctuations in macroscopically uniform adlayers 
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[5, 6] or the evolution of adsorbate concentration profiles purposely set up on 
a surface under study [7]. In this paper we shall focus on the latter approach, 
since the concentration profiles manifest the phase effects in surface diffusion in 
a rather graphical way and allow one to study them in a wide coverage range. 

In principle, any technique which locally probes the adsorbate concentra- 
tion with a sufficient accuracy and spatial resolution can be utilized to record 
the diffusion profiles. Data are available acquired by contact potential tech- 
niques, Auger electron spectroscopy, photoelectron emission, ellipsometry and 
other methods [7-12]. However, since the experiments are usually very laborious, 
only a few systems have been investigated in considerable detail. Below we give 
some representative examples of multiphase surface diffusion. We have chosen 
these examples among the results obtained for electropositive (alkali, alkaline- 
earth) adlayers on refractory metals. These systems are remarkable for several 
reason. 

First, the lateral interaction in them are particularly strong [13], which re- 
sults in pronounced phase effects. Second, these interactions are diverse even 
for the same system, e.g. a strong repulsion at small coverages may change for 
an attraction at medium coverages and again for the repulsion at coverages ap- 
proaching a monolayer [1, 7, 13]. Finally, the electropositive adlayers cause strong 
work function changes, which gives a possibility to determine the coverage with 
a high accuracy (N 10-2 of monolayer). 

The experiments are carried out in ultra-high vacuum and with careful out- 
gassing of materials used, because surface diffusion is extremely sensitive to 
impurities. The results presented in this paper were obtained with a scanning 
technique based on contact potential measurements [7]. Its spatial resolution is 

15/.tm. The work function distributions are converted into coverage distribu- 
tions over the surface using calibrated curves work function versus coverage. The 
structural data were obtained by low-energy electron diffraction. For experimen- 
tal details see [7] and [14]. Evaporating an adsorbate on the substrate through 
different masks, one can set up initial coverage profiles shaped as steps ("semi- 
planes"), stripes or trenches. The diffusion profiles are recorded by scanning the 
surface with the electron beam, the energy of electrons being below 1 eV. 

2 E x p e r i m e n t a l  r e s u l t s  a n d  d i s c u s s i o n  

Fig. 1 shows a typical coverage profile obtained in surface diffusion of barium on 
the (011) surface of molybdenum [15]. This surface is densely packed and has 
a pseudohexagonal structure. The initial Ba deposit had a step-like shape with 
the boundary at z = 0 and the coverage about 3 monolayers. (In fig. 1 the cov- 
erage is measured in close-packed Ba monolayers. For the Ba-Mo(011) system, 
the close-packed Ba monolayer has a hexagonal symmetry and is incommensu- 
rate with the substrate structure). The diffusion profile is seen to have a complex 
shape which is completly different from the symmetrical smooth shape predicted 
for diffusion of noninteracting particles and represented by a well-known com- 
bination of the error functions [2]. The coverage terraces and steps seen in the 
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profile correlate with the formation of the specific Ba phases marked in the right 
part of fig. 1. The terraces corresopnd to the commensurate Ba lattices c(6 × 2) 
and c(2 × 2) where the concentrations of Ba adatoms amount respectively to 
1/12 and 1/4 of the surface concentration of Mo atoms on the (011) plane. The 
longest terrace emerges in the vicinity of the c(2 × 2) phase. 
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Fig. 1. A coverage profile for Ba diffusion out of a step-like initial deposit (notations 
are explained in the text). The substrate is Mo(Oll). 

it  is evident even intuitively that fiat sections of the diffusion profile should 
mark the coverage intervals where the diffusivity is higher. Quantitatively, this 
follows from the Boltzmann-Matano equation which enables one to extract the 
diffusivity D(O0) at a particular coverage O0 from the concentration profile O(~) 
(see e.g. [2, p. 11]): 

D ( 0 o )  - foe° x dO 
oo (2) 

Here t is the diffusion time and x is measured form the Matano plane which 
divides the O(x) profile in two parts having equal areas. 
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The structure c(2 × 2) is specific in the sense that it is the densest com- 
mensurate lattice. At higher O's, there occurs a transition to incommensurate 
structures (IS). The transition is initiated by one-dimensional (1D) compression 
of the c(2 × 2) lattice which is effected by formation of linear incommensurate 
walls separating the commensurate domains [16]. Owing to mutual  repulsion, the 
domain walls form their own superlattices. The coverage range corresponding to 
this region of the phase diagram is labeled 1D-IS in fig. 1. It has been suggested 
that the fast Ba diffusion in this O interval (revealed by the wide terrace in the 
O(x) profile) is due to  high mobility of the incommensurate domain walls [7]. 
These walls can be treated analytically as topological solitons in the commen- 
surate structure, so the suggested diffusion mechanizm was termed the soliton 
mechanism [17]. 

Actually the displacement of the domain walls is predicted to be effected by 
random walks of kinks which are generated in the walls by thermal excitation. 
The random walks of the kinks result in meandering and, in the final account, in 
the random walks of the walls. Of course, it should be kept in mind that  these 
walks are influenced by the interaction of the domain walls (solitons) [1, 17]. 
Anyway it is clear that the diffusion under such conditions has a pronounced 
collective character. A model of the soliton diffusion mechanism is depicted in 
fig. 2. The adatoms from the initial deposit intrude into the commensurate phase 
and form there solitons which move to the edge of the spreading layer and shift 
it forward. 

SOLITON 

Fig. 2. A model of the soliton mechanism of surface diffusion. Positions of adatoms 
with respect to surface potential relief are shown schematically. 

The coverage range marked PT-1 in fig. 1 corresponds to the region of first- 
order phase transition where the phases (2 × 3) and c(2 × 2) coexist in equi- 
librium (the relative concentration of Ba atoms in the (2 × 3) phase with re- 
spect to Mo surface atoms equals 1/6). It is seen that  this coverage interval is 
represented as a "step" in the O(z) profile. Similar results have been obtained 
in volume diffusion [2]. This behaviour can be readily understood in terms of 
Eqn. (1). If one considers a quasi-stationary diffusion along the x axis and writes 
(ap/Ox)  = (Op/c3n)(On/c3x), then in the first-order phase transition one should 
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have (a /an) = 0 and ( a n / a x )  -+ 

These results illustrate that in the state of local equilibrium the diffusion 
zone represents actually a section of the phase diagram at the diffusion tempera- 
ture, i.e. a kind of a "collective portrait" of all 2D phases appearing at various 
coverages. 

Very graphical results consistent with this statement were obtained in com- 
puter simulations in which surface diffusion was displayed for some model sys- 
terns with a realistic set of lateral interaction parameters [i8]. 

In our opinion, the formation of 2D phases within the diffusion zone may 
be considered as a kind of reaction between the diffusing adatoms and vacant 
adsorption sites. The arising "products" can be characterized by a specific geom- 
etry of the bonds, the 2D structure, and the stoichiometry. Thus, such a system 
may belong to the class of the reaction-diffusion systems with initially separated 
components (see e.g. [19]). 

For Ba on Mo(011) and other similar adlayers it was impossible to follow the 
diffusion of adatoras at -6) ~ 1 and 6) > 1, because the adatom mobility at such 
coverages occurs to be essentially lower than at 6) < 1. Such behaviour is typical 
of the systems with strong repulsive interaction within the first monolayer which, 
in addition to the concentration gradient, favours the spreading. 

Let us now consider some data for adlayers where this factor is less pro- 
nounced and the observation of the diffusion is possible at supermonolayer cov- 
erages, too. We have recently obtained such results for lithium on the molybdeum 
(112) face. The Mo(l12) surface has a highly anisotropic structure: it consists of 
close-packed rows of Mo atoms separated by atomically deep channels (fig. 3). 
This imposes strong anisotropy both on the lateral interactions of adatoms [13] 
and on their diffusion. The models of Li structures based on low-energy electron 
diffraction experiments [20] are shown in fig. 3. The chain structures p(1 ×4) and 
p(1 × 2) are formed at 6) = 0.25 and 6) = 0.5, respectively (for Li adlayers the 
coverage is defined as the ratio of surface concentrations of Li and Mo atoms). 
The structure denoted 1D-IS is a one-dimensionally incommensurate structure: 
Within the range 0.67 < 6) < 1.0 there occurs a uniaxial compression of the 
adlayer along the channels which finishes up with the formation of the p(1 × 1) 
structure. The second monolayer (6) > 1) fills the channels between' the rows of 
Li adatoms in the p(1 × 1) structure. 

The Li coverage profiles which evolve in the course of diffusion out of a s tep-  
like initial deposit approximately 5 monolayers thick are given in fig. 4. The 
diffusion which is followed along the channels is seen to result in spreading of 
a monolayer with a rather sharp edge. The concentration gradient at the edge 
remains virtually constant, and the displacement of the edge is proportional to 
v~. The shape of the profiles reveals the highest mobility in the second layer 
(1 < 6) < 2): Thus the diffusion mechanism seems to correspond to the model 
shown in fig. 4. This mechanism was suggested for the cases when adatoms within 
the first monolayer are less mobile than in the second and subsequent monolayers 
[21]: Equation (2) was used to calculate the diffusivity from measured concen- 
trat ion profiles. Since D is higly coverage-dependent, we shaped initial step-like 
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Fig.  3. Coverage dependence of the activation energy Ed for Li diffusion on Mo(112). 
Instets: Li structures on Mo(l12) [20]. See text for notations. 
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Fig.  4. Diffusion of Li out of initial step-like deposit on Mo(ll2).  Annealing times (in 
minutes) are shown. Inset: assumed diffusion mechanism. 
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profiles with different initial coverages, and their evolution was recorded at dif- 
ferent temperatures.  Some of the data on the diffusivity obtained in this way are 
depicted in fig. 5. The full set of the data was utilized to plot Arrhenius lines 
(fig. 5) as well as to extract  the activation energies (fig. 4) and the preexponen- 
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Fig. 5. Diffusivity versus coverage for Li on Mo(l12) at different temperatures. Dashed 
curve is the calculated dependence D(~9) at T = 300K. Inset: Arrhenius plots at 
selected coverages. 

tial factors (not shown here). In turn, these values were used to calculate D as 
a function of 69 for the whole coverage range 0.05 < O < 1.5 at a constant temper-  
ature 300 K (fig. 5). It  is seen that  the growth of the diffusivity in this 19 interval 
spans more than 5 orders of magnitude and that  the activation energy of diffu- 
sion decreases (with same nonmonotonities) by a factor of three. The strongest 
variations occur in the region of incommensurate structures (0.5 < 19 < 1) and 
just  above 19 = 1.0. These changes mirror the strong repulsive interaction in the 
incommensurate  structures and the sharp enhancement of the ada tom mobili ty 
on passing to the second li thium monolayer. 

Interesting peculiarities of Li diffusion in the vicinity of 19 = 1 and in the 
second monolayer were observed on the Mo(011) surface (fig. 6). To reveal them 
more cleary, we shaped a step-like Li profile on the surface previoulsy covered 
with a continuous ("base") Li adlayer corresponding to a coverage of 0.8. Here 
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Fig. 6. Diffusion of Li out of an initial step-like deposit on the Mo (011) surface pre- 
covered with a base adlayer (O = 0.8). (1) to (5): coverage profiles; inset: Displacement 
of the leading edge versus v/t for O = 1.07(6) and O = 1.6(7). Data were obtained with 
V. V. Poplavsky. 

we observed the emergence of clear-cut terraces at ~9 ~ 1.07 and 6) ~ 1.6. 
The former correspond approximately to the close-packed Li monolayer.  The 
terraces at ~9 = 1.6 may be associated with the formation of a double-layer 
film. It  was inferred that  during the building-up of the second monolayer a par t  
(,~ 20%) of Li a toms of the first (somewhot compressed) monolayer may be 
expelled to the second one. The edges of both  terraces move linearly with x/~, 
but  their spreading rates are somewhat different (fig. 6). These results exemplify 
a process of layering of the spreading film. Similar behaviour was found recently 
for spreading droplets of oily liquids on solid surfaces [10]. 

Consider now some diffusion data relating to the limit of very small coverages 
({9 < 0.1). They were obtained lately for Li on the Mo(l12) surface. An example 
of these results is presented in fig. 7. We continuously evaporated l i thium on a 
half  of the sample while another half was shadowed with a mask.  The process 
of Li diffusion (Mong the atomic channels) was followed in the shadowed region. 
The measured coverage profiles show two peculiarities: a terrace at an hollow 
behind the terrace (more experimental data  can be found in [14]). These features 
are still not understood. 

I t  might be supposed that  the appearance of the low-coverage terrace re- 
flects the filling of some surface defects (traps) by diffusing Li atoms. However, 
this assumption seems to be not compatibile with the formation of the coverage 
hollow. It  is therefore speculated that  the terrace could be due to the growth 
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Fig. 7. Evolution of concentration profiles during continuous evaporation of Li on 
a part of Mo(112) crystal. The flux of Li atoms is 1.4. 101°cm-2s -1. 

of a 2D lithium phase with large (up to ,-, 30~ in the coverage) interatomic 
distances. The surface like Mo(112) are predicted to provide an especially long- 
range substrate-mediated lateral interaction (U --, r -1) along the channels. This 
is due to the circumstance that the Fermi surface has some flat areas oriented 
normally to the channel axis [13]. Another effect which could ensure the long- 
range interaction and stabilize the rarefied phase is connected with mesoscopic 
self-organization of adlayers observed recently [22]. The driving force for such a 
self-organization can stem both from elastic strain [23] and electrostatic interac- 
tion [23, 25]. 

As to the concentration hollow (fig. 7), it must signal on some peculiarity 
in the chemical potential which is able to produce a region of uphill diffusion. 
Since this region is displaced along the surface while its shape is conserved, 
there must be some factor stabilizing it. Its origin (electrostatic? elastic strain?) 
is so far unclear. It cannot be ruled out that this concentration feature should be 
considered in terms of spatio-temporal dissipative structures [12, 26-28], since the 
processes in the diffusion zone seem to be strongly nonlinear and nonequilibrium. 
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The above suggestion are of course only hypotetical. It is definitely necessary to 
accumulate more experimental data and first of all to provide a better  spatial 
resolution in the surface diffusion measurements. 

3 Conclusion 

The experimental results discussed in this brief review were selected to demon- 
strate that  interaction of diffusing particles makes surface diffusion an intricate 
phenomenon. Due to difference in the diffusion rates inherent to various adsor- 
bate phases there occurs a competition between them in the diffusion zone, the 
largest area on the surface being occupied by the phase with the highest spread- 
ing rate. Thus one may speak of a self-organization of the diffusion zone in which 
a dynamic phase portrait  of the spreading layer is developed. The strongly non- 
linear properties of adlayers can bring about some interesting effects. 

It seems safe to predict that further experimental and theoretical studies 
of surface diffusion will substantially contribute both to basic understanding 
of diffusion processes and to practical applications in thin films technologies, 
catalysis and other fields. 
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A b s t r a c t :  The theory of particles moving in topologically random disordered 
environment is just in its infancy. Following our previous work on classical ran- 
dom walk in the presence of topological disorder due to randomly distributed line 
defects, we analyze the problem of a quantum, spinless, charged particle moving 
on a topologically disordered lattice. Specifically we discuss the motion on a d=2 
square lattice penetrated by an array of randomly distributed Bohm-Aharonov 
magnetic fluxes. Next, we discuss the situation in which particle moves over 
a d=3 lattice containing random array of screw-dislocation dipoles. We show 
that  the particle dynamics becomes highly anisotropic and that  the underlying 
dynamics can be approximated by that of a quantum particle with anisotropic 
effective mass lighter in the direction towards which the dislocation dipoles are 
aligned. 

1 I n t r o d u c t i o n  

One of the fascinating problems in the mathematical theory of random pro- 
cesses is the so called Bochner problem [1] in which a marble is rolled, without 
the slip, down the plane along the random walk trajectory, and the questions are 
posed as to the statistical properties of the trace of that trajectory on marble 
surface. Bochner problem focuses our attention on necessity of developing statis- 
tical differential geometry, and the theory of stochastic processes on differentiable 
manifolds in particular. Potential applications of these theories are diverse and 
range from image processing problems to general relativity and cosmology. In 
this work we shall report on our at tempts to analyze quantum theory for a 
single, charged and spinless, particle moving in various topologically disordered 
environments. We repeat our analysis of random Bohm-Aharonov problem and 
outline our recent analysis of the dislocation dipole lattices. 

It is often said that  the Bohm-Aharonov effect has no classical analogy, and 
that  topological properties of a manifold on which the particle moves are of no 
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real importance in classical physics. We believe that this is not entirely true 
and that classical dynamics in the presence of topological defects exhibits some 
features akin to the Bohm-Aharonov effect. Indeed, elsewhere [2] we have have 
shown that the simple random walk [4] executed by a particle in a crystal con- 
taining random array of straight, parallel to each other screw disclinations shows 
essentially different properties than that on a empty lattice. 

Since the diffusion process involves large traveling distances of a particle it is 
then convenient to use the continuum theory of defects initiated by KrSner[5, 6]. 
This theory emerges from a lattice description in the limit of vanishing lattice 
spacing where however local angular directions are retained. The natural math- 
ematical framework for such a theory is the differential geometry. In Ref.[2] we 
have shown that the proper description of random walk on the differential man- 
ifold containing topological defects, like dislocations and disclinations is via the 
Fokker-Planck equation for the probability distribution P(x,  t). Using system- 
atically the apparatus of the path integral approach, we were able to show how 
the diffusion changes qualitatively in the presence of line defects. 

When the defect ensemble is assumed to be Gaussian with zero mean, and a 
translational-invariant second moment which includes the possibility of screening 
of the topological charges [2], we obtain the root mean square particle displace- 
ment behavior as: 

( t )  ~ , (1) 

where m is the screening length, and 7 is the strength of the defects correlation 
function second moment. 

When the topological defects are not screened then above, subdiffusive be- 
havior changes dramatically, and we obtain: 

{x 2) (t) ,~ (lnt) 2 (2) 

The above result, sometimes referred to as Sinay diffusion has been well un- 
derstood for a one dimensional models [7]. We believe that  our result is the 
first more than d= l  example of the Sinay diffusion. Referring the reader to the 
Ref.[2] for details of the classical theory we turn now to description of quantum 
propagation. 

2 Quantum Particle Moving in Random Flux Field 

In this section we shall analyze the motion of a quantum particle influenced by 
a particular type of the topological disorder namely the random magnetic fluxes 
system. The model discussed below [8], originated as an obvious generalization 
of a conventional the Bohm-Aharonov effect [9]. The question is how this effect 
will look like in the presence of many flux line and when they become randomly 
distributed. 

The problem of a quantum particle moving in the random potential field 
has been subject of extensive experimental and theoretical investigation [10]. 
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In contrast, very little is known about the behavior of the quantum particle 
in presence of a random magnetic field. Recently Pryor and Zee have analyzed 
numerically motion of a spinless quantum particle in the random magnetic flux 
arrangement [11]. As we shall see in what follows, their results do agree quite 
well with our analytic theory. 

Imagine two - dimensional square lattice (see Fig. I) and assume that  each 
plaquette is penetrated by a magnetic flux ¢(x + a/2, y + a/2). 

Q 
Q 

(: +a) 

(x,y) (x+a,y) 

Dislocation dipoles 

Fig. 1. Magnetic Flux Lines 

G 
Q 

I 

The fluxes in different plaquettes are assumed to be independent and homoge- 
neously distributed over the interval (0, 27r) . (The values of fluxes are measured 
in units of elementary flux h/e). Furthermore, assume that a single, spinless, 
quantum particle move over this lattice, and that its motion is governed by the 
tight binding Hamiltonian, which we write in the form 

~x,y;x'y' : --Kx (~a:,x'+a eiaA=(x-a/2'y) Jv ~x,x'-a e-iaAx(xWa/2'y)) ~y,y' -- 

K~ (6~,~,+ac ~°A~(x'y-a/2) + 5y,~,-oe -~A~(~'y+~/2)) 4,~' , (3) 
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where K~ and Ky are the coupling constants along x and y directions of the 
lattice, respectively. A~ and A u are the components of the magnetic field vector 
potential,which, as in the lattice gauge theory, are defined on the lattice bonds. 

The main difference, however, between the present problem and that of par- 
ticle moving in random potential rests on later locality. Indeed, the particle 
needs to move just one lattice constant to experience changes induced by ran- 
dom scalar potential. In our case of random magnetic fluxes the particle must 
traverse a closed loop around the region containing the flux to notice its presence 
at all. This non-locality, known from the theory of the Aharonov-Bohm effect 
[9], results in technical difficulties in the analysis to follow• 

If the magnetic fluxes were distributed periodically our model will be similar 
to that analyzed theoretically by Rammer and Shelankov [12] and experimen- 
tally by Bending el al. [I3]. We believe that experimental arrangements of fluxes 
analyzed in our paper can be achieved using one of the new high Tc materials 
in which fluxes might form random arrangements in contrast to usual supercon- 
ductors in which fluxes form periodic lattices• 

In this work we shall be interested in the averaged density of states (0(w)}, 
where (-..) denotes the average over the flux distribution• 0(w) is given by the 
difference of the retarded and advanced propagators 

0(~)) ~- i 2 (G R (r, rt;(,d)- a A (r, rt;a))) 
r 

(4) 

where 

c R/A (r, r'; = ¢i (r ' ) ,  (5) 
i w--¢i-4-i7 l 

and, el(r) and Q are normalized eigenfunctions and eigenenergies of the one 
particle Hamiltonian H. 

In order to calculate the above quantity we adopted here generating func- 
tional approach developed for the random potential problem by Bausch and 
Lesehke [14]. To this end let us define two "vectors" 

(6) 

(7) 

where ¢ and ¢ are complex fields, and the star denotes complex conjugation. 
The generating functional Z{g} depends on the matrix source field t and has 
the following form: 

Z{g} = [ D ~ D ~ e x p  (J + S) , (8) 
d 

where 
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-[-K~eiaAx(x+a/2'Y)~ ) (x, y; w) . • (x -F a, y; w) 

+K~ e-~°Ax(~+a/2'Y)~ (x + a, y; ~ )  . ¢ (x ,  y; ~) 

+I(ye-i~A~(~'u+"/2)~ (x, y + a; w) . ¢ (x, U; w) . (9) 

The functional S, the so-called source term, is given by: 

1 f dw d J  
S= "2 J 2 .  2~r E E ¢ ~ ( r ' w ) l a ~ ( r ; w ' w ' ) q ) ~ ( r ' w ' )  (10) 

r a,fl 

The virtue of the generating functional approach is that by differentiating 
Z{~} with respect to source field l ~  we can obtain the relevant quantity. For 
example the functional derivative of Z{Q with respect to /~l( r ;w,w')  at g = 0 
equals -27rS(w - w')GR(r, w). 

Now, since Z{g = O} = 1 we may perform the averaging over the (quenched) 
disorder before attempting to calculate either of the propagators. In process of 
evaluation of the mean value of Z{g) one encounters the problem of averaging 
expressions like 

e x p ( ~ r  [U(r)xl(r)-b U*(r)x2(r) q- V(r)x3(r) q- V*(r)x4(r)] ) , (11) 

with U(r) = exp{iaAy(x,y + a/2)} and V(r) = exp{iaA,(x + a/2, y)}, and 
xi(r), i = 1 . . . 4  being arbitrary functions of r. 

For an arbitrary type of magnetic disorder, the cMculation of those averages 
become formidable mathematical task. In the case of magnetic disorder we have 
chosen, the average is conveniently done in the Landau gauge : 

A~ = 0  

Ay(x, y + a/2) = ~ ¢(xl + a12, y+  a12) , (12) 
2 1 : - - 0 0  

what implies that U-factors, for different values of y coordinate, are statistically 
independent. Rather tedious analysis presented in Ref.[8] permits us to express 
the effective functional 3"1 = ln(exp J) as 

J1 -2 ~ r 0 ~ - i,~ 
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Kx (~)(x,y;w)qS(x + a,y;w) + 4)(x + a,y;w)4~(x,y;w)) ] + 

E l n / 0  ( 2 K y v / T r R ( x , y ) R ( x , y + a ) )  , (13) 
r 

where we have introduced the matr ix/~ 

R ~ z ( r ; ~ ; J )  = 1 - , (r; (14) 

Here and in what follows Tr denotes usual matrix trace and the integration over 

Notice that  the term with lnI0 produces infinite number of vertices. This 
should be compared wi th  the random potential case, where after averaging we 
get only one vertex of the fourth order in the fields ¢ and ¢. This is the direct 
manifestation of the non-locMity of the present problem. 

The averaged value of the Z is then 

(Z{~}} = / DeD~) exp{J1 + S} (15) 

where the source term is written as S = E r  Tr~(r)/~(r). 
The mean filed analysis of the averaged path integral Eq. (15) has been pre- 

sented in Ref.[8]. Here we present our main results. 
Since our physical system is spatially homogeneous we are looking for the 

R~3 function in the form R°e (r, w, oa') = 27r5 (w - w') 5~R~  (w) This assump- 
tion permits us to evaluate exactly the imaginary part of R~(w) which in turns 
prowide us with the averaged density of states ~(w). In Fig. 2 we display ~(w) 
for three different values of o~. 

Now, the main result is the narrowing of the band. In the case Of the free 
particle the allowed energies extend between -2K~ - 2Ii'y and 2K~ + 2Ky. In 
the presence of magnetic disorder the band is shrinking (w0 < 2Ii'~ + 2Ky). This 
is in contrast with the potential fluctuation case where we observe the tails of 
the averaged density of states in the energy range forbidden for the free particle. 

For the symmetric lattice, Ky = K~ we may compare our result with those of 
Pryor and Zee [11]. In Ref.[ll] the motion of a quantum particles was analyzed 
on a finite lattice in the presence of the magnetic flux disorder analogous to 
that  discussed in our paper. The calculated quantity was p(E), defined as the 
probability density of finding the state with its energy between E and E + dE. 
The main results in Ref.[ll] was the narrowing of the band. States with eigenen- 
ergies 3.4Ky < IEI < 4Ky were found to be extremely improbable. This result 
coincides with our band shrinking (lowest curve in Fig. 1) obtained within the 
mean field approximation. Pryor and Zee [11] considered also a different type of 
magnetic disorder than those discussed so far. They assumed that  each plaquette 
of the lattice may be penetrated by the magnetic flux which takes two values 
- 0 or ~" only, and with equal probability. Our analysis can be directly applied 
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Fig.  2. Density of States plotted for various values of the ratio a = K,/Ky. Upper line 
a = 0.1, heavy line a = 0.5. Bottom line a = 1. 

also to t ha t  case by averaging the generating functional  Z{~} over such mag-  
netic disorder. In order to do so we have to modifiy our saddle point  me thod ,  as 
out l ined in Ref.[8], but  finally we obtain  the same density of  states as previously. 
I t  is t empt ing  to interpret  tha t  results as a mean field indicator  of  some sort of  
s tat is t ical  universality. 

3 D i s l o c a t i o n  D i p o l e s  

Real crystall ine materials  are far f rom being ideal. A m o n g  possible crystal l ine 
media  defects, those carrying topological charges, like dislocations and disclina- 
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tions are of particular interest. [5, 6, 15, 16, 17] Indeed, screw dislocations and 
disclinations might serve as kind of elastic field analogues of the Bohm-Aharonov  
fluxes. In the previous Section we have discussed the motion of a quantum par- 
ticle hopping on a two-dimensional lattice which cells contained randomly dis- 
t r ibuted magnetic field fluxes. In this Section we would like to approach a model 
which is more general for it indeed deals with fully three dimensional case, and 
instead of random magnetic fluxes uses more realistic model of elastic screw 
dislocation array. 

The problem of a quantum particle interaction with a topological defects was 
studied before [18], where the influence of electorn scattering off ~be dislocations 
on the electric and thermal conductivity was analyzed. This analysis was based 
on the Bol tzmann equation, thus all the important  quantum interference efects 
were lost. As our work shows these effects are of predominant  importance.  
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fluxes penetrating its cells. 
Fig. 3. Screw Dislocation Dipoles Array 

To begin with consider now a two-dimensional slice of a simple cubic lattice as 
shown in Fig. 3. Consider now two screw dislocations parallel to the z axis of the 
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lattice, piercing the slice at the location (x - a/2, y + a/2) and (x + a/2, y + a/2) 
where a is the lattice spacing. The Burgers vectors of these dislocations having 
the same length b are pointing in opposite directions. We shall refer to such 
an arrangements of a two dislocation lines as dislocation dipole, or as d-dipole, 
located on the bond joining lattice positions (x, y) ---* (x, y + a). Analogously we 
can talk about  d-dipoles located on the bond joining (x, y) ~ (x + a, y). If the 
bond (x, y) ---+ (x, y + a) is occupied then this bond connects lattice sites with 
different z-components, namely (x, y, z) ~ (x, y+a ,  z+b) .  It is therefore natural 
to introduce the Burgers function .A(x, y) such that,  if ,4(x, y + a/2) = 0 the 
bond joins lattice sites (x, y, z) ---, (x, y + a, z) for each z. If A($,  y + a/2) = :l=b 
then the bond joins lattice sites (x, y, z) --+ (x, y + a, z -4- b). 

When the lattice is populated with the dislocation dipoles, we introduce the 
randomness by assumption that, for each point (x, y) 

A(x ,  y + a/2) = 0 with probability 1 - 2p 

A(x ,  y + a/2) = b with probability p 

A(x ,  y + a/2) = - b  with probability p (16) 

and similarly for bonds parallel to x-axis. 
The motion of a quantum, spinless particle moving on the lattice populated 

by such a d-dipoles is described in the tight-binding approximation, and write 
its (discrete) Hamiltonian as 

- ? + (17) 

Now, the main quantity we are interested in, is the single particle Green 
function G(r, r ' ,  t). This function satisfies the Schrbdinger equation , which we 
found convenient to write immediately in its time-Fourier transform form 

E [(w -4- i~l)br,r, - 7-/(r, r')] ~(w, r', r H) = Jr,r,, (18) 
r l  

Following its construction the d-dipoles array possess full lattice translational 
sYmmetry along the z-axis. We write then the Fourier transform of relevant 
functions as: 

f ~ / ~  7-/(r,r') = a dkexp ( i k ( z  - z ' ) )~k (p ,P ' )  , (19) 
J--Tr/a ZTT 

where p denotes a two dimensional space vector. Similar expression holds for the 
Green function G. 

Now, the Fourier transform of the Hamiltonian Eq(17) can be split naturally 
into its bare, 7-/°(p, pl) and perturbed 7/~(p, pt) parts. We have 

0 

- + - cos(ka) , (20) 
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and 

u ~ ( p ,  p') = 

- 7  [6y,y,+a (e -ik'a(x'y-a/s)- 1)-~y,yt_ a (e ik'4(x'y+a/s)- 1)]~x,x+ (21) 

One should compare this Hamiltonian with that in Eq.(3). 
Having done so, we can follow the standard perturbation theory and write the 

Dyson equation for the Green function 9(w, k, p, p~) . The perturbation series 
can then be averaged over the d-dipoles ensemble. In the final expression for 
the mass operator we shall retain terms which are linear in the probability p. 
Doing this we encounter situation somwhat analogous to already discussed in 
Section 2. Indeed the quantity analogous to U(r) and (V(r) from Eq.(11) are 
n o w  : 

U1 ( x, y + a/2) - exp(-ik.A( x, y + a/2)) - 1 

V1 (x + a/2, y) - exp(+ik.A(x + a/2, y)) - 1 
u_l (x, u + a/2) : u;  

v_l(x + ,~/2,u) = v~ (22) 

The averaging procedure, for the perturbation series, details of which will be 
published elsewhere [19], is straightforward although quite tedious. Following all 
the steps we obtain the explicit expression for the Fourier transform of the mass 
operator 

~(w, k, ks, Icy) = 

(k~b2 ) [1-27G°(a)][c°s(kxa)+c°s(kya)]+47G°(O) (23) 
= 87psin2 1 + 4sinS(kb/2)[7:G~(a) - 7G0(a) - 7SG~(0)] ' 

where Go(a) is the the Green function for unperturbed Hamiltonian equals to 
Go(wk; x, y; x,y + a) related to the value G0(0) of the same function via the 
relation 1 - 27G0(, ) = 1/2 ÷ (1/2)(w + 27 cos(ka))Go(O). 

This complicated expressions simplifies considerably in the long wavelength 
limit (/ca <(1)  and close to the zone bottom, i.e. w ,~ -67 .  We obtain then 

~(~, k, ks ,  ~y) ~ 2pTa ~ k s . (24) 

Since in the long wavelength limit ") ' a  s ---- 1/2m where m is the particle mass, we 
obtain from Eq.(24) that the particle mass becomes anisotropic assuming bare 
value in both directions transverse to the dislocations, and along the d-dipole 
direction equals to 

2 . ~  - 2.~ 1 + 2p (25) 
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Notice, that  Eq.(25) predicts that particle is lighter along the dislocation 
lines direction, the result which can be easily understood on physical grounds, 
and which clearly reflects the topological property of the screw dislocation. One 
of the remarkable features of our result is that, within our approximation, i.e. 
in the long wavelength limit and with accuracy up to linear terms in p the mass 
operator Eq.(24) is purely real. That  implies that the our quasiparticle (the 
electron moving in the d-dipole field) has infinite life time. 

The above outlined theory of quantum motion in the random d-dipole field 
can be extended for dislocation dipoles with the variable dipole moment i. e for 
d-dipoles with the length L = ( 2 / +  1)a, g --- 0, 1, 2 , . . -  . Working again in the 
long wavelength limit, kb << 1 we can now derive also the expression for the mass 
operator in the large g limit when still gqoa << 1. Here q0 is the wave vector in 
the direction transverse to the dislocation lines. Again, we observe reduction of 
the particle mass along the preferred direction, which is slowly varying function 
of the d-dipole length ~. 

1 1( ) 
2m~--  2m l+- - r r  l n ( 2 e + l )  (26) 

4 C o n c l u s i o n s  

In the previous Section we have outlined the theory of random dislocation dipoles 
induced modification in the quantum propagation of a particle. We have shown 
that  in the continuum limit, i.e with accuracy up to k 2, the presence of the 
topological disorder results only in the change of the effective particle mass. The 
imaginary part of the mass operator ~ is zero. The change in the effective mass 
results in small modification of the density of states. As compare to the d=3 
free particle case the only change is in the slope of the density of states, which 
becomes smaller in d-dipole case, reflecting lower value of the particle effective 
mass. 

Note that  the analysis in Section 3 was not self consistent and we expect to 
report on the self consistent analysis, similar to that presented for magnetic flux 
case in Section 2 shortly. 

The two models presented above represents just the "tip of an iceberg" of 
problems in which topological defects may totally alter the dynamical properties 
of the system. The analysis presented here is far from being complete and this 
talk was intended rather as introduction to the class of problems rather than a 
presentation of advanced theory. Both quantum models discussed in the paper 
are of considerable applied interest. In order to appreciate the physical signifi- 
cance of the predicted band narrowing we should analyze two points Green func- 
tions for our particle. Only then we would be able to compare the case of random 
fluxes to that  discussed in [12]. Whether the departure form IBI (periodic fluxes) 
or the usual B 2 ( homogeneous field) [20] behavior of the magneto-resistivity 
will be observed also in that case remains an open question. Some work along 
this line is now in progress. 
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Initially-separated reaction-diffusion systems: 
theory and experiment 

Haim Taitelbaum 

Department of Physics, Bar-Ilan University, Ramat-Gan 52900, ISRAEL 

1 I n t r o d u c t i o n  

The A + B ~ C reaction-diffusion process with initially separated components 
is more readily amenable to experimental studies than similar non-convective 
systems with initially uniformly mixed reactants, a condition which is difficult 
to achieve in a real chemical system. The initial separation of reactants leads 
to formation of a dynamic reaction front, which is a spatially localized region 
with non-zero reactant production, that  can be visualized and measured. The 
presence of such a reaction interface is a characteristic of many processes in 
nature [1-12], and has recently at tracted much research interest [13-34]. 

When the reaction constant is vanishingly small, the species will mix before 
reacting. This leads to an initial behavior, very rich in detail; prior to a crossover 
to the asymptotic behavior. The crossovers for a variety of characteristics of 
the reaction front have been found to depend on the system parameters, such 
as the microscopic reaction constant, (which can therefore be determined from 
macroscopic experiments), as well as the diffusion coefficients and the initial 
densities of the two species. 

In this paper we review our recent theoretical and experimental studies 
on initially-separated reaction-diffusion systems, and describe the novel kinetic 
properties of the reaction front. 

The following set of mean-field-type reaction-diffusion equations for the local 
concentrations p~, pb has been assumed to describe the A + B --+ C reaction- 
diffusion system [13] : 

Op~ _ 
-Or - -  DaV2pa - -  kpapb ( la )  

Op~_b = DbV2pb _ kpaPb (lb) 
Ot 

where Da, Db are the diffusion constants, and k is the microscopic reaction 
constant. The  equations are subject to the initial separation condition along the 
;g axis ,  

pa(x, O) = aog(x), pb(x, 0) = b0[1 - g (x ) ] ,  ( lc) 



Haim Taitelbaum 

where a0, b0 are the initial densities and H(x) is Heaviside step function. This 
means that initially the A's are uniformly distributed on the right side (x > 0), 
and the B's - on the left (x < 0). 

Several dynamic quantities characterize the kinetic behavior of this system: 
The global reaction rate, R(t), the location of the reaction front center, xl(t), 
the front width, w(t), and the production rate of C at the center, R(x], t). The 
local production rate of C, defined as the reaction term in Eq.(1), 

R(x, t) = kpa( , t), (2)  

is the basis for defining all other quantities. For example, the global reaction rate 
is the spatial integration over R(x, t), the center of the reaction front is defined 
as the position where R(x, t) has a maximum, and the width is defined through 
its second moment [13]. 

2 M e t h o d s  a n d  R e s u l t s  

Two main analytical methods have been used to study the model system. The 
first is a scaling theory by G£1fi and R£cz [13], which is valid for the asymptotic 
time limit. They assume that in the asymptotic time domain, R(x, t) has the 
scaling form 

R(x,t) ~ t-P F ( ~ - ~  ) , (3) 

where F is a scaling function. Their study yields j3 = 2/3, with x] .~ t 1/2 and 
w = t ~ ,,~ t 1/6,  results which have been supported by numerical calculations 
[14-17]. 

The second analytical approach is a perturbation theory by Taitelbaum et 
al [17-18], which is valid for relatively short times, when very little reaction 
takes place before the species become effectively mixed. This initial behavior 
has been found, theoretically and experimentally, to be very rich in detail. The 
perturbation expansion is based on a description of the initial behavior using a 
small dimensionless reaction constant, given by 

k 
e = (4)  

x/aoboDa Db " 

On the assumption e << 1, one can apply perturbation theory to solve Eq.(1), 
by expanding the concentrations in the power series 

o o  o o  

pa(x,t)-'-=aoEajeJ , pb(x , t ) - -boE•jeJ  , (5) 
j=O j=O 

where the dimensionless concentrations a0 and ~/0 satisfy ordinary diffusion equa- 
tion under the initial separation condition in terms of dimensionless Heaviside 
step functions. 
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The combination of the results from these two theoretical methods, leads to 
a series of crossovers from the initial to the asymptotic behavior of the kinetic 
properties of the reaction front. These crossovers depend on the microscopic 
reaction constant, as well as on the ratios of diffusion coefficients and initial 
densities of the two species. For example, the global reaction rate R(t)  changes 
dramatically from an initial t 1/~ increase to a final t -1/2 decrease, at time pro- 
portional to k -1 [17]. In practice, these crossovers take place on a real time scale 
of hours, thus providing a useful means to extract microscopic parameters from 
macroscopic experiments. 

We have confirmed the crossover predictions by solving Eq.(1) numerically 
[17], using a procedure which is based on a split-step algorithm that  uncouples 
the diffusion and the reaction at each time unit [35]. The diffusion part has been 
solved by the exact enumeration method [36], which is equivalent to discretizing 
the evolution equation, whereas the reaction effect has been calculated according 
to the reaction term in Eq.(1). This algorithm is more efficient and less time- 
consuming than a standard numerical solution of the corresponding differential 
equations. 

In Table 1 we summarize the crossover from the short-time limit to the 
asymptotic behavior for characteristics of the reaction front in the initially- 
separated system. 

Table  1. A summary of the crossover behavior of the reaction front properties in the 
initially-separated A + B ---+ C reaction-diffusion system. 

quantity notation short-time long-time 

global rate 

center of front 

width of front 

local rate at xf 

R(t) 

*s(t) 

~(t) 

R(*I, t) 

fl/2 t-112 

non-universal tl/2 

ill2 fl/6 

const, t -21a 

In the context of the mean-field results, it should be noted that Larralde et 
al [24] have found an asymptotic quantitative expression for R(z ,  t) for the case 
of symmetrical system parameters. The mean-field description has been argued 
by Cornell et al [20] to be valid above an upper critical dimension dup = 2. 
Results for systems below this dimension, in particular in one dimension, have 
been obtained by several groups, and are reviewed by Havlin et al [27,28]. 
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3 E x p e r i m e n t s  

The experimental studies of this system have been performed at the University 
of Michigan by the group of Prof. R. Kopelman. The experiments are based on 
optical absorbance measurements of the reactants and the product, and have 
been performed in a 52 centimeter long glass reactor made of a rectangular cap- 
illary with 4 * 2 mm 2 cross section (Fig. la). The reactants were poured into 
each end arm of the reactor slowly by using syringes. They met at the center, 
forming a vertical boundary at t = 0. Light sources in appropriate wavelengths 
have been used for the optical excitation (with low-pass filters for noise reduc- 
tion), and a photo-multiplier-tube (PMT) as a detector. A slit unit, composed 
of two slits with adjustable widths has allowed light to pass to and from the 
reactor. The slit widths were 0.05 mm on the light source side and 0.09 mm on 
the detector side to ensure a 0.1 mm mechanical resolution. The light source, 
solenoid with the filters, slit unit and. the detector were all fixed on a stepping 
motor, which moved the system along the reaction front domain (Fig. lb),  the 
length of which was less than 5 cm after 24 hours. The glass reactor itself was 
separately fixed over the slit unit. A typical snapshot of one scan, which yields 
the absorbance profile of the product, is shown in Fig. 2. Further details about 
the experimental technique are described in [15]. 

(a) 

Glass reactor 

a= 

(b) 

PMT 

. ~ . _ _ ~ . . _ ~ _ _ ~ i t  unit 

I I ~ filters attached to 

Light source 

he solenoid 

F ig .  1. (a) The glass reactor. (b) Top view of the experimental set-up for the absorbance 
measurements. From Koo and Kopelman [15]. 
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Fig. 2. A typical snapshot of an absorbance profile of a product. 

In order to test experimentally the asymptot ic  predictions, Koo and Kopel- 
man have chosen [15] the inorganic bimolecular reaction Cu2++ "tetra" --* 1 : 1 
complex (in a gel solution), where "tetra" is the molecule disodium ethyl bis(5- 
tetrazolylazo)acetate trihydrate. This reaction is instantaneous, which means 
that  k is large, and the reaction, being diffusion-limited, passes immediately to 
the asymptotic regime. In addition, one can easily monitor simultaneously both 
the reactants and the product through optical absorbance measurements, due 
to their very different colors. The use of a gel as a solvent resulted in a vertical 
boundary between the species at t = 0 and also prevented convection, still al- 
lowing efficient diffusion [15]. With these materials, Koo and Kopelman found 
the asymptotic results for the rate R( t )  ..~ t -°'54, for the width w ..~ t °ns, and 
for the reaction center z /  .~ t °-4s, all exponents within 10% of those predicted 
by the theory ( -1 /2 ,  1/6, and 1/2, respectively). 

However, in order to test the crossover predictions, one has to use reactants 
which react slowly. For this purpose, Kopelman and co-workers [18,33] chose the 
reaction Cr3++ X.O. --+ 1 : 1 complex in gel, where X.O. is Xylenol Orange, 
a molecule whose structure is shown in Fig. 3. In this slow reaction the color 
changes from orange (of the X.O.) to purple (of the product). The experimental 
results have confirmed the crossover predictions. 

In Fig. 4 we show the behavior of the global production rate R( t )  which 
crosses over from an initial increase proportional to t 1/2 to a final decrease pro- 
portional to t -1/2,  as has been predicted above. The crossover point enables 
estimation of the microscopic reaction constant. 

In Fig. 5 we show one of the most striking phenomenon exhibited by the 
initially-separated system. This is the non-monotonic motion of the reaction 
front center. The front changes its direction of motion along the separation axis, 
after reaching an extremum position. Indeed, such a behavior is predicted by 
the perturbation analysis. In what follows we review the interesting results for 
the non-universM behavior of the center of the reaction front in the short-time 
limit, which has been mentioned briefly in Table 1 above. 
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Fig .  3. The structure of a Xylenol Orange molecule. 

r3 

$1 

m 

[ ]  

El 

t i  

t l  

m t l  

i ' ' ' i ' i i 3.0 3 5 4.0 4.5 5.0 5 5 6.0 6 5 7 0 7.5 

ta t  

Fig .  4. Experimental results of the global reaction rate R ( t )  as a function of time for 
the reaction Cr3++ X.O. --~ 1 : 1 complex. 
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Fig .  5. Experimental results of the reaction center location zy (in units of 0.l mm), as 
a function of t ime (min), for the Cr3++ X.O. ~ 1 : 1 complex system. From [18]. 
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4 Kinetics  of the  Reaction Front Center 

The center of the reaction front, xy, is defined as the position where the local rate 
R(x ,  t) is a maximum.  The general expression for x !  is found after maximization 
of R(x ,  t) and expansion around the initial x = 0, and is given by 

-~ (:~D -- ~/-D) t-112 + eM(D'r)tll2 
 j(t) ~ _ 

~t  -1 + eN(D ,  r) 
( 6 )  

where 

, ," = , ( 7 )  

and M and N are t ime-independent constants, with a non-trivial dependence on 
D and r. The behavior of x] has been found to be extremely sensitive to these 
parameters ,  as is summarized in Table 2. Apart  from the symmetric  trivial case 
( x f  -- 0 for all times), there can be as many  as four different universality classes 
for describing the kinetics of the front in the little reaction regime, and as many  
as three distinguishable regimes in time. 

Table  2. A summary of the various time-dependences of xy, the center of the reaction 
front, as a function of the system parameters D and r. 

{ D , r }  

{ D = I ,  r = l }  

{D=I,,#I} 

{D#I, ,=I} 

{ 2 + v / 3 >  D > 1, r < l }  
o r  

{1 > D > 2 - v ~ , r  > 1} 

{D>l,~>l} 
o r  

{ D < l , r < l }  

short times intermediate times long times 

0 0 0 

0 t 312 tl/2 

tl/2 t112 tl/2 

t I12 t 312 - non-monotonic t I12 

ti12 t312 ill2 
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As can be seen from the table, for short times x] N t l /  2, provided that 
D ¢ 1. When D = 1, (and r 5£ 1), the first term in the numerator vanishes, 
and the center of the front remains fixed in position at the earliest times. As 
time increases, the second term in the numerator becomes significant, so that 
x /  ~ et 3/2, finally changing to the asymptotic t 1/~ behavior. Thus, for D = 1 
and r ¢ 1, there are three distinct regions for the kinetic behavior of x$. If also 
r = 1, than M vanishes as it should, and z !  = 0 for all t, due to symmetry. 

The most interesting feature of x] ,  is, of course, the possibility of the non- 
monotonic motion along the separation axis. The mathematical expression of 
this feature is that the function z / ( t )  has some extremum point as a function 
of time. The time t* for which z / ( t )  has such an extremum point, depends in 
a complicated manner on D and r, through the rather cumbersome expressions 
for M and N. However, it turned out that t* will be positive, and thus with a 
physical meaning, only if the parameters D and r satisfy the double condition 
{D > 1 and r < 1}, or, equivalently, {D < 1 and r > 1}. In fact, if D is too 
large (D >2+v/3  ~ 3.73) or too small (D < 2 - x/~ ~ 0.27), t* will be negative, 
and x] will not have a physical extremum point, independent of the value of r. 
But if we restrict ourselves to values of D not too far from 1, than we can write 
{D > 1 ,  r < 1} (or the opposite), as the condition which ensures the change of 
the direction of motion of the front. 

This result can be physically understood. Suppose, e.g., that  Da > Db and 
a0 < b0. At very early times diffusion effects are dominant, and the direction of 
motion is determined by the penetration of the A-species to the left, B-side of 
the system. Later on, the reaction comes into play, and the species with higher 
concentration, B, will govern the direction of motion, which will be towards the 
right, A-side. Note that  this result involves both two lowest orders in e, so one 
expects the transition of the front from one direction to the other to occur at a 
rate proportional to t 3[2. Indeed, in the experiment whose results are plotted in 
Fig. 5, the parameters used were 5 x 10-SM Xylenol Orange (diffusion constant 
3.5 x 10 - l °  m2/sec), and 7.5 x 10 -4 M Cr 3+ (diffusion constant 2.7 x 10 - l °  
m2/sec), so that D = 1.14 and r = 0.26 in accord with the requirements for an 
extremum position. In addition, one can clearly see that the change of direction 
occurs at a rate much higher than the asymptotic t l /2 . This formal short-time 
limit behavior takes place at time t = 223 min, which is definitely quite long. 
This is because of the very small reaction constant k in this chosen system, so 
that  the corresponding small parameter e defined in Eq.(4) is extremely small, 
and the short-time limit is extended over an easily measurable time interval. 

For D > 1 and r > 1 (or vice versa), equation (6) predicts that  xy is mono- 
tonic in time. However, for small values of k, there are three regions of different 
kinetic behavior: at the very earliest times x/  -,~ t 1/2, at later times t 3/2, (cor- 
responding to the order of the perturbation expansion), and finally one obtains 
the asymptotic proportionality to t l /2.  
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5 T w o  r e a c t i o n  f ront s  

Recently, while repeating the last experiments (with X.O.), some different and 
challenging results have also been obtained. The first is the global rate which 
exhibits more than one crossover as a function of t ime (as is seen in Fig. 6), 
and the second, which is also very surprising, is the existence of more than one 
localized front,  as is exemplified by the two peaks in the results for the local 
production rate R(z,  t) as a function of x, as is shown in Fig. 7. 

-4"  

D 

-5 % ~ ~ 

.6 

lnt 
Fig. 6. Experimental results of the global reaction rate R(t) as a function of time, with 
more than one crossover. 
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Fig. 7. Experimental results for the spatial profile of the local production rate R(x, t), 
which exhibits two reaction fronts. 
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Recently, we have suggested a generalized theory to explain these results. 
The theory is based on the idea that there may be more than a single species 
on one of the sides of the initially-separated system. The model is based on 
the existence of two similar species A1 and A2 on the right side of the system, 
and a single species B on the left side. By similar species we mean that most 
of their properties with respect to the reaction-diffusion system are the same. 
For example, both react with B, and both have the same diffusion coefficient. 
However, each of the A's is assumed to react with a different reaction constant 
with the B, so that the reaction scheme is 

A1 + B  k-£C1 

A2+ B ~£C2. 

(8a) 

(8b) 
The products C1 and C2 are assumed to be either identical or at least with very 
similar wavelength, so that they are indistinguishable by the detector in the 
experiment. Thus, the local reaction rate of this system will be a superposition 
of the form 

R(z, t) = klp°l (z, t)pb(z, t) + k2po~ (~, t)pb(~, t). (9) 

We have studied this system by means of the numerical split-step algorithm 
described above. The detailed results will be published elsewhere. However, the 
main point is that our results are very similar to those of the experiments, 
provided that kl and k2 differ by several orders of magnitude, and the faster 
reacting Ai species is only a very small fraction of the A's. For example, when 
kl is 103 or 104 times larger than k2, and A1 ia abouts 2% of the entire A bulk, 
then the numerical results resemble the experiments. This is since the main 
reaction is indeed the slow one (with A~), but there exist a very small fraction of 
slightly different version of A which reacts much faster with B, and introduces, 
e.g., an early decrease to the behavior of the global production rate, R(t), prior 
to the crossover induced by the slow reaction of A2. Such a system also explains 
the two peaks in the behavior of the local rate R(z, t), which results from a 
superposition of two reaction fronts, the fast and the slow, as will be described 
in detail elsewhere. 

However, referring to the experiments, the question is Who are these A1 and 
A2 in the specific experimental system. Naturally, one would think about various 
sources of impurities or defects which result in a non-ideal experimental system. 
However, the puzzle is that A1 and A2 should be somehow related, since they 
yield the same, or at least a very similar product upon reacting with B. 

In order to answer this question, we notice that one of the parameters that 
plays a crucial rule in such reactions is the pH value of the solution. The reaction 
under study (CrZ++ X.O. --* 1 : 1 complex) is known to be highly dependent 
on the pH value [37]. Back in 1960, in a paper written in German by Reh£k and 
KSrbl [38], the authors perform a physico-chemical study of Xylenol Orange. 
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They show that  X.O. can appear in ten different ionic transformations as a 
function of the pH value of the aqueous solution. The percentage of each chelate 
as a function of pit  is shown in Fig. 8. Indeed, for pH=4.5, which was the average 
pit  value in most of the experiments, one can see that  there exist simultaneously 
two forms of X.O., 3% of H4XO ~-, and 97% of HaXO a- ,  which is exactly the 
expected picture for the relative portions of the Ai's in the two-front system. Note 
that  the two transformations differ only by a single proton, thus one expects that  
the diffusion coefficients are the same, the product of the bimolecular reaction is 
the same, and the only difference, which can be explained on chemical grounds, 
is the very different reaction constant which represents the reaction efficiency. 

100 

80 

6O 
% 

4O 

20 

.,×o \/ \ / \ H×oO / 
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Fig. 8. Percentage of each ionic transformation of Xylenol Orange as a function of the 
pH of the solution. After l~eh£k and KSrbl [38]. 

6 S u m m a r y  

In summary, we have presented various characteristics of the reaction-diffusion 
system A + B ~ C with initially separated components, which exhibits a series 
of crossovers from an initial to an asymptotic time behavior. We have focused 
on the kinetics of the reaction front center and showed that its motion can 
be classified into four different universality classes, depending on the system 
parameters.  In particular, we showed theoretically and experimentally that  the 
front can exhibit a non-monotonic motion, which occurs when one of the species 
has larger diffusion coefficient but smaller initial density. In addition, we have 
discussed the case of a two-front system, which results from a simultaneous 
presence of two similar species on one of the sides of the system, an example of 
which is the case of two ionic transformations of the same molecule. 
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A b s t r a c t :  We review recent developments in the study of the diffusion reaction 
systems of the type A ~- B ~ C in which the reactants are initially separated. 
We consider the case where the A and B particles are initially placed uniformly 
in Euclidean space at x > 0 and x < 0 respectively. We find that  whereas for 
d ~ 2 the mean field exponent characterizes the width of the reaction zone, fluc- 
tuations are relevant in the one-dimensional system. We also present analytical 
and numerical results for the reaction rate on fractals and percolation systems. 

1 I n t r o d u c t i o n  

The dynamics of diffusion controlled reactions of the type A + B ~ C has been 
studied extensively since the pioneering work of Smoluchowski [1, 2]. Most stud- 
ies have focused on homogeneous systems, i.e., when both reactants are initially 
uniformly mixed in a d-dimensional space, and interesting theoretical results 
have been obtained. When the concentrations of the A and B reactants are 
initially equal, i.e., cA(O) = cB(0) = c(0), the concentration of both species is 
found to decay with time as, c(t) ,,~ t - d / 4  for Euclidean d < 4-dimensional sys- 
tems [3-10] and as c(t) .~ t -d'/4 for fractals [5,6] with fracton dimension de _< 2. 
Also, self-segregated regions of A and B in low dimensions (d < 3) [4] and in 
fractals [9] have been found. Quantities such as the distributions of domain sizes 
of segregated regions and interparticle distances between species of the same 
type and different types have been calculated [11-13]. These systems were also 
studied theoretically and numerically under steady state conditions and several 
interesting predictions have been obtained [14-17]. However, the above numer- 
ical and theoretical predictions have not been observed in experiments, in part 
because of difficulties to implement the initially uniformly-mixed distribution of 
reactants. 

In recent years it was realized that diffusion reaction systems in which the 
reactants are initially separated [18], can be studied experimentally [19,20] and 
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that  the dynamics of such a system have many surprising features [20-27]. These 
systems are characterized by the presence of a dynamical interface or a front 
that  separates the reactants. Such a reaction front appears in many biological, 
chemical and physical processes [28-34]. 

GMfi and Rkcz [18] studied the diffusion-controlled reaction system with 
initially separated reactants. They studied the kinetics of the reaction diffusion 
process using a set of mean-field (MF) type equations, 

OcA 02CA 
. . . .  Ot = DA--a--~X 2 -- kCACB ( la)  

Ocs ~ 02cB 
Ot = ~ B - - ~ - S  - kCACB. (lb) 

Here CA -~ CA(X, t) and CB -- CB(X, t) are the concentrations of A and B particles 
at position x at t ime t respectively, DA,B are the diffusion constants and k is the 
reaction constant. The rate of production of the C-particles at site x and time t, 
which we call the reaction-front profile, is given by R(x ,  t) =_ kcACs. The initial 
conditions are that the A species are uniformly distributed on the right-hand 
side of x = 0 and the B species are uniformly distributed on the left-hand side. 

Using scaling arguments, GMfi and R~cz [18] find that  the width w of the 
reaction front R(x ,  t) scales with time as, w ~ t ~ with a = 1/6 and the reaction 
rate at the center of the front, which is called the reaction height, scales as 
h ~ t -~  with/3 = 2/3. 

Experiments [19] and simulations [19,21-24] for d > 2 systems in which 
both reactants diffuse, support the above predicted values for c~ and j3. Indeed, 
Cornell et al [23] argue that the upper critical dimension is d = 2 and the MF 
approach should therefore be valid for d _> 2. Moreover, numerical simulations of 
1D systems show that the width exponent appears to be a _~ 0.3 and the height 
exponent /3 "~ 0.8 [23,24]. Recently [25] it was argued that  a varies between 1/4 
and 3/8, depending on the moment at which the width is calculated. For a more 
detailed discussion, see Sec. 3. The origin of the difference between the exponents 
of 1D systems and those of higher dimensional systems is due to fluctuations in 
the location of the front which are important  in low dimensions and are neglected 
in the MF approach. 

Taitelbaum et al [20,22] studied analytically Eqs. (1) and presented exper- 
iments for the limit of small reaction constant or short time. The main results 
are that  several measurable quantities undergo interesting crossovers. For exam- 
ple, the global reaction rate changes from t 1/2 in the short time limit to t - ] /2  
at the asymptotic time regime. The center of the front can change its direction 
of motion as found in experiments [20]. Ben-Naim and Redner [26] studied the 
solution of (1) under steady-state conditions. 

2 T h e  F o r m  o f  t h e  R e a c t i o n  F r o n t ,  R ( x ,  t ) ,  i n  t h e  

M e a n - F i e l d  A p p r o a c h  

In a recent work [27] we consider the symmetric case in which both diffu- 
sion constants and initial concentrations are equal, i.e., DA = DB -~ D and 
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CA(X, O) = CB(X, O) = Co. If we define r (x ,  t) =_ CA(X, t) -- CB(X, t), then from Eq. 
(1) follows, 

OF _ 02F 
a-7 = u a z  2 , (2) 

subject to the conditions that initially the A particles are uniformly distributed 
to the right of the origin while the B particles are uniformly distributed to the 
left of the origin. Equation (2) has the solution F(x,  t) = co e r f ( x / ~ ) .  

We rewrite the concentrations of A and B particles as (see Fig. 1), 

cA(x,t)  = C~(x,t)  + ~c~(x,t), c . ( x , t )  = c~(x , t )  + 6c~(x,t) (3) 

where 

[x < 0}, (4) 

and G2(x,t) = G l ( - x , t ) .  It is easy to see that under the above conditions, 
6c1(x, t) = 6c2(x, t) =_ he(x, t). Substituting Eqs. (3) into Eqs. (1) yields 

~-~ ~x 2 k co erf ~ +6c 6c (5) 

The asymptotic solution for this equation that vanishes as x -+ oc is, 

1 tl/6 (4Dt)l/2, \ t l /6 ] exp - t-yT-ff/6 , << x << (6) 

where A = (ka/D) 1/3, a - Co/(~rD) 1/2. As may be confirmed by direct substitu- 
tion, this expression is a solution of Eq. (5) up to terms of order (hc)/t, which 
can be neglected for large t. 

Using Eq. (6) we can write an expression for the reaction-front profile/~(x, t) 
defined in (1) as, 

R ( x , t ) ~  kax t -2 /3[  x '3/4 [ ~ [ ) ~ x ~  312 
- t-~/~ (5c) ~ t,7~7~/~7 exp - \ t l i ~ )  (7)  

It  is seen that the width of the reaction front grows as t ll~, whereas the height 
can be identified with the prefactor t -2/3 in Eq. (7), consistent with the expo- 
nents found by G£1fi and R£cz [18]. Equation (7) provides a more quantitative 
solution of Eqs. (1) than the previous scaling arguments [18], as well as infor- 
mation on the dependence of the form of the reaction front on the parameters 
co, k, and D, for the symmetric case. 

For the case in which one reactant is static no analytical solution (of Eq. (1)) 
exists for the form of the reaction front profile. However, numerical solutions 
of Eq. (1) with D s  = 0 shown in Fig. 2, suggest that R(x' , t )  ~ t-[3g(x'/ t~).  
• exp(- ix ' i / t~) ,  where x' =_ x - 7t U2. The excellent scaling in Fig. 2b suggests 
that  the width does not increase with time, i.e., w .v t ~' with a = 0 and h -~ t -n  
with/7 = 1/2, consistent with the scaling arguments in ref. [21]. 

93 



Havlin/Araujo/Larralde/Shehter/Stanley/Trunfio 

G2 G 1 

Fig. 1. Schematic picture of the reactant concentration profiles near the origin. The 
solid lines represent the G1,2(x,t) part of the profile, the dashed lines represent the 
complete form G1,2 (x, t) =l= 6c(x, t). Note that the profile of species A is given solely by 
5c(x, t) on the left of the origin. (From Ref. [27].) 

3 T h e  F r o n t ,  R ( a , t ) ,  i n  d = 1 

The reaction front profile in d = 1 systems, R(x, t ) ,  when both reactants are 
diffusing with the same diffusion constant, DA = DB ~ O, has been calculated 
numerically [24]. The data shown in Fig. 3 suggests that  

co(x, t) =__ R(x, t')dt' .v exp(-alxl/tc~), (8) 

with a = 0.33 + 0.05. 
For the case DA ~ O, DB = 0, analytical and numerical studies [37] yield 

for the reaction front profile 

4t~/4 \ ~ - /  exp 2 # t - ~  1 +  27tl/2 j ,  (9) 

where 7 and p are constants. From eq. (9) follows that  a = 1/4 and ~ = 3/4. It is 
interesting to note that the time integrM of R(x, t), which is the total  production 
of the C-particles at x up to time t, is given by 

(10  cc(x , t )  = R (x , r )d r  = ~erfc ~ . 

To summarize the case of A + B --~ C with initially separated reactants, we list 
in table 1 the four sets of exponents discussed above. 
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4 T h e  R e a c t i o n  R a t e  in  d = 2 P e r c o l a t i o n  

The case of A+B--~C with initially-separated reactants on fractal systems was 
studied on the d = 2 infinite percolation cluster at criticality [22], for a demon- 
stration of the system see Fig. 5. 

It is expected that the total number of reactants up to time t, 

_'° cc(x, t)dx, 
o o  

scales as the mean displacement of a random walker on a fractal, i.e., (r2)  1/2 ~,~ 
t 1/d~, where dw is the anomalous diffusion exponent [38]. From this follows that 
the reaction rate 

/: R ( t )  = R ( x ,  t )dx  ~ t - v ,  "r = 1 - 1 /dw.  (15)  
oo 

One has to distinguish between reaction-diffusion on the infinite cluster and 
in the percolation system, containing also small clusters [39]. The reaction rate 
on the infinite cluster is smaller and decrease slower compared with the system 
containing clusters of all sizes. This can be understood as follows. At any finite 
time we can divide all clusters into two groups according to their sizes: active 
- clusters of mass s > s*, in which at time t < t* ~ 8 * d ~ [ d !  particles are not 
aware of the finitness of their cluster (this group contains the infinite cluster), 
and inactive clusters of mass s < s* on which at least one of the reactants has 
been vanished and the reaction rate is zero. According to this picture, in the full 
percolation system at any time there are active clusters of finite size, that  can 
contribute to the reaction rate. Therefore, the rate of reaction in the percolation 
system is always higher, than on the infinite cluster. Also, at any time there are 
some finite clusters that become inactive causing additional (comparing with 
the infinite cluster network) decrease of the rate of reaction in the percolation 
system. Since the system is self-similar one expect a change in the reaction rate 
exponent. 

To quantify the above considerations we can look on each cluster of mass s 
and linear size r ~ s 1/dJ as a reservoir of particles divided by the front line into 
A- and B-parts. We introduce an active front of a cluster as the sites belonging 
both to the cluster and to the front line. The length £s of the active front of a 
single cluster of size s is expected to be 

d f  - i  

Zs "" r ~J-1 ~ s dl  ( 1 6 )  

Next we assume that rate of reaction on a cluster of mass s per unit length of 
active front is 

t -~ t < t* Ro(t) 0 t > t* ' (17) 
t~J 

I .  

where t* = s d~/dl. Therefore, the total contribution of active clusters of size s 
to the reaction rate is 

df  - 1  

Re(t) ~ ~ss-ZT-t -~, (18) 
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Fig .  4. Reaction-diffusion on the 2 - -  dimensional infinite percolation cluster at crit- 
icality at t = 2000. White squares represent sites of the infinite claster. Blue and red 
circles represent the A and B particles. Initially all sites of cluster in the right half 
plane and left half plane were occupied by A and B particles respectively. 
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where ~ is number of clusters of size s that  intersect the front line. One can 
est imate ~ as follows. In a percolation system of size L x L there are n~ clusters 
of mass s. Only a small part  of them intersects the front line, those in a strip 
of width w ~ s 1/~f around the front line. Their fraction is w / L .  Therefore, 

s l / d f  
~ ~ - -E - -n s  ~ s l / d s n s .  Subs t i tu t ing  this in (18) we get 

elf  - 1 

R s ( t )  ~ sl/dJnss--ZT-s t - ~  = t - ~ s n s .  (19) 

Thus, the reaction ra te  in the percolation system is 

o 0  

R(t) = ~ R,(t) = t - ~ ( . * 7  - ~  = ~- '~ t  - ~  = t - ' ~ '  

d ~  
= ~ ' -  ~ = -~ (~- -  2). 

d~ 

These results are in good agreement with our simulations, see Fig. 6. 
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Fig.  6. Numerical simulations of A + B ~ C where N diffusing particles of type A are 
initially at the center of a lattice and particles of type B are static and located at each 
site of the d ---- 3 lattice: (a) plot of C(t)  for N ---- 100 (×), 500 (.), 1000 (m), and 2000 
(A) particles; (b) plot of C(t)  in the scaling form Eq. (22a). Note that the results are 
of a single Monte" Carlo run and not averaged--showing that fluctuations are negligible 
in this process. 

We also study the finite size effects on the reaction-diffusion system. For a 
percolation system of size L × L we expect that  for the infinite cluster, 

R(t)  = L ds - l t  -~,  (21a) 
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Fig.  7. Numerical simulations of A + B(~t~tic) --* C(inert) where A particles are injected 
at rate A = 5 at the center of the lattice and particles of type B are static and are 
located at each site of a d -- 2 lattice. Plot of the reactant area after t ---- 20, 160, 540, 
1280, 2500, 4320 and 6860. 

while for the percolat ion system 

R(t)  = Lt -~' .  (21b) 

We expect  tha t  at t ime t* ,,~ L d~ these two rates become equal, since no "small" 
active cluster exist in the system above t*. Indeed, equat ing the last two ex- 
pressions of  (21) reproduces  Eq. (20). The prefactor L in (21b) assures tha t  the 
react ion rate for percolat ion sys tem is larger for t < t* than the react ion rate  on 
the infinite cluster. Indeed,  the ratio of the reaction rates at t -- 1 is L 2-ds.  
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5 T h e  R e a c t i o n  R a t e  A-{-Bstat ic---+Cinert :Local ized S o u r c e  o f  A 

Another system in which the reactants are initially separated and which is 
amenable to experiment, is the reaction A4-Bstatic ---+ Ciner t  with a localized 
source of A species. There exist many systems in nature in which a reactant 
A is "injected" into a d-dimensional substrate B where upon it reacts to form 
an inert product C. Recently such an experiment has been performed [40] by 
injecting iodine at a point of a large silver plate and measuring quantities of the 
reaction I2 gas 4- 2Agsolid ---+ 2AgIsolid 

First we consider N particles of type A that are initially at the origin of 
a lattice. The B particles are static and distributed uniformly on the lattice 
sites. Using an approximate quasistatic [41] analytical approach for trapping in 
a moving boundary we derived expressions for C(t), the t ime-dependent growth 
size of the C-region and for S(t) the number of surviving A particles at time t. 
For extremely short time t < tx "~ l n N  we find C(t) .~ t d. For t > tx we find 
[42] 

C(t) ,.~ N f ~ and S(t) = N - C(t). (22a) 

The scaling function f(u) is the solution to the differential equation 

d/ ~ kd/_2/d[  1 _ / ] ,  (22b) 
d~- 

and kd is a constant, depending only on dimension. Figure 4 shows simulation 
data supporting (22a). 

Now consider the case in which ~ particles of type A are injected per unit 
t ime at the origin of the lattice. For this case we find [40] 

x/8Dtln(A2t/2D) d =  1 
c ( t )  ~ d = 2 (23) 

)~t d=  3, 

and 
At d = l  

S ( t ) -  ( ~ - ~ a ) t  d = 2  (24) 
C3(A)t 2/3 d =  3. 

In (23) and (24), c~ is the solution of a~" = ~ e x p ( - a / 4 D )  and C3()~) = (A/4D) • 
• (3A/4x) 2/3. Moreover, we find that for both one- and three-dimensional systems 
C(t) satisfies the scaling relation 

C(t) ~ )~d/(d-2)g ( ~ )  . (25) 

Equations (23)-(25) have been supported by numerical simulations [40]. 
Equations (22) can be generalized for fractals; 

( t )  
c ( t )  N f , (26a) 
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where f(u) is the solution of the differential equation, 

d--~df .,~ k d .  f-2/d'[1 - f]. (26b) 

Here ds is the fracton dimension defined by d8 = 2df/dw, in which d] is the 
fractal dimension and d~ the diffusion exponent [43]. For the case of constant 
injection rate on a fractal we do not have an analytical derivation. However, 
we recently calculated [38] the number of distinct sites visited on a fractal by 
N random walkers starting from the origin, SN(t) ~ (lnN)df/~td'/2 with 5 = 
dw/(dw - 1). This result can be shown to be valid also for the number of distinct 
site visited by random walkers injected at the origin with a constant rate A when 
replacing N = At. Thus we obtain that (ln~t)dl/~tas/2 is an upper bound for 
C(t). 
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1 I n t r o d u c t i o n  

In the recent years, reaction-diffusion problems have stimuled a large body of 
work in many different directions. On the experimental side, new techniques have 
been developped to investigating Turing patterns. The availability of computers 
with massive parallel architecture makes it possible to perform extensive numer- 
ical simulations based on microscopic (or mesoscopic) models. Thus the role of 
the fluctuations, not included in a description based on mean-field like equations, 
is now quite well understood. Moreover, on the theoretical side, several advances, 
based on renormalisation group analysis of the field theories associated to these 
reaction-diffusion processes, have been achieved. 

The purpose of this contribution is to briefly review some aspects of these 
recents developpements. 

In a first section, we revisit the problem of anomalous kinetics in simple re- 
action diffusion models as A + A ---* 0 or A + B ~ 0 in view of the recents 
field theoretical developments. In the next section we consider the problem of 
reaction-diffusion fronts and particularly the case of a stationnary front obtained 
by imposing particles flux at the boundaries. A simple scaling theory leads to 
exact predictions concerning the long time proporties of the front. Then, the 
problem of Liesegang pattern formation is discussed. A cellular automata mi- 
croscopic model reproducing the generic properties observed experimentally is 
presented. Finaly, in the last section, the problem of the role of the microscopic 
fluctuations in the formation of Turing patterns is briefly considered. 

2 A n o m a l o u s  k i n e t i c s  

Chemical reactions in which several species react are usually described in terms 
of macroscopic rate equations. These rate equations give the time evolution for 
the local averaged concentrations of the different species. They assume that the 
reaction is completely described by the local average densities, i.e. the reaction 
introduces no correlations between the reacting species. This is reminiscent of 
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a mean-field approximation in statistical physics, and therefore neglects an im- 
portant  aspect of the problem, namely the microscopic fluctuations. 

For homogeneous diffusion-reaction systems, it is well known that  the fluctu- 
ations play an important  rhle. The simplest example is may be provided by the 
annihilation reaction A + A ---+ 0 [1]. The solution of the rate equations predicts 
that the concentration of A will decrease in time as a "~ t-1 while a calculation 
taking into account the microscopic fluctuations in the particle density a gives 
a ___ t a, with a = Min(1, d). 

The situation is even more surprising in the case A + B ~ 0. For an initial 
state for which the number of A and B particles are the same, the solution 
of the rate equations predicts again that the concentration of A (or B) will 
decrease in time as a _ t -1. A calculation taking into account the microscopic 
fluctuations gives for the particle densities n n _~ t ~, with a = Min(1, d) [2]. 
Thus the mean-field prediction is only valid above an upper critical dimension 
d~ = 4. Below this upper critical dimension, there is a spatial segregation of 
the two constituauts. The system splits in patches reach in A or B. Thus, the 
componants can only react at the borders of the domains, hence the anomalous 
kinetics. The reason for which one has segregation is very subtle. As first noticed 
by Cornell [3], this is mainly an effect of the initial conditions. Providing that  
the particles in the initial state are randomly distributed (Poissonian state), it 
suffices to integrate the mean-field equations to obtainthe anomalous behavior 
described above. Moreover, if there are some correlations in the initial state, 
different behaviors can be expected. 

An large number of papers have been devoted to the problem of anomalous 
kinetics and we do not want to review them here. However,we would like to make 
the following remark. Although non mean-field, the critical exponents involved 
in these kinetic problems are "simple", i.e. basicaly simple rational numbers. Is 
this accidental or is there some more fundamental reasons for that? The answer 
to such question can only be given in the framework of a global theoretical 
approach. One is interested in the long time behavior of systems which dynamics 
is "critical", i.e. characterised by power laws. Hence it seems natural  to look for 
a renormalisation group approach. Two problems arise; first how to construct a 
field theory for such reaction-diffusion and second how to defined and implement 
a renormalisation group scheme. 

The first question has been revisited recently by Droz and MeKane [4]. To 
describe these nonequilibrium situations, one has to start at the master  equa- 
tion level to keep track of all the fluctuations. However, to explain the scaling 
behaviour which takes place in the long time regime, it is natural to seek a coarse- 
grained theory. It is, however, crucial that this coarse-grained theory keeps track 
of all the important  fluctuations contained in the system. 

Two different approaches, apparently disconnected one from the other, have 
been proposed in the literature: the Fock space formalism [5] and the Poisson 
representation [6]. As shown explicitly in [4], although starting from different 
point of view, the two above approaches are equivalent. Namely, there is a one 
to one correspondence between the Liouvillians and the field theories of the two 
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methods. Once the Liouvillan obtained from the master equation, one can derive 
a path-integral representation for it and coarse-graining gives a field-theoretic 
description of the process under consideration. We shall not go into the details 
of these two formalisms here but simply quote the form of the Lagrangian of the 
field theory for the A + A ---+ 0 model [7]: 

The field ¢(r, t) corresponds approximately to the local particle density, while 
the auxiliary field ¢(r, t) has no particular physical meaning. 

A renormalisation group analysis can then be performed following the lines 
of the dynamical renormalisation group approach used in dynamical critical phe- 
nomena. The first work along this line has been made by Droz and Sasvari[7] for 
A + A --~ 0 with external sources. Generalisation to the case n A  ---+ 0 has been 
investigated by Lee[8]. Extensions to A + B ~ 0 have been studied by Cardi and 
Lee[9]. 

Let us return to the simple case A + A ~ 0. The renormalization group 
analysis procedure is the following. First, one eliminates the Fourier components 
of the fields belonging to the shell A / b  < k < A. Then, one rescales the lengths 
and time according to 

k I = bk, t '  = b-~t .  (2) 

Fields and vertices are rescaled as required by their dimensions. 
It turns out that no two-legs diagram is generated. The bare propagator is not 

renormalized, hence the fields do not have an anomalous dimension (the theory 
is snper-renormalisable). This is basically the reason why the critical exponents 
discribing the anomalous kinetics are "simple". 

Moreover, the new couplings absent in the initial Lagrangian and generated 
during the renormalization procedure, are irrelevant. In d > 2, the stable fixed 
point corresponds to the limiting case in which the reaction is very slow in 
comparison with the diffusion. Thus the diffusion mixes the particles efficiently 
enough so that  a homogeneous reaction takes place for which the mean-field 
theory is valid. 

In d < 2, the behavior of the system is governed by the nontrivial fixed points. 
We have, in fact, a line of fixed points parame.trized by the initial values of the 
Couplings. On this fixed line, diffusion and reaction proceed at a comparable 
rate, resulting in an interplay of the two processes, hence the breakdown of the 
mean-field theory. The critical exponent are found exactly in all dimension. 

For the the A + B ~ 0, the situation is more subtle. As shown by Cardi and 
Lee, the corresponding field theory has also an upper critical dimension d= = 2. 
However, the term in the Lagrangian describing the (poissonian) initial state is 
very important in this case. New terms are generated during the renormalisation 
procedure which are relevant for a dimension d < 4. These new terms reflect the 
apparition of segregation in the system. 

Thus the renormalisation group approach of the corresponding field theories 
gives an unified description of the problem. 
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3 Reaction-diffusion fronts 

A more complicated class of problem is that for which the initial condi¢ion is in- 
homogeneous. The inhomogeneities of the problem often arise from the presence 
of sources or sinks of particles. This may lead to the formation of reaction- 
diffusion fronts. 

3.1 T h e  t i m e  d e p e n d a n t  p r o b l e m  

A simple model displaying a reaction front has been analysed at the level of 
the rate equations by Gglfi and R£cz[10]. They consider two species A and B 
diffusing on a two-dimensional substrate and reacting to form a new species 
C. Provided that the two diffusing reagents A and B are initially separated in 
space, they will react in a confined region ("reaction front").  An appropriate 
choice of geometry reduces the problem to one dimension in this approximation. 
In particular, it is assumed that,  at time t = 0, the system is uniformly filled 
with A for x _< 0, and uniformly filled with B for x > 0. The study of the 
properties of this front provides relevant information about the production of C 
particles. The analytic treatment of G£1fi and R£cz assumes that  the reaction 
rate is expressed in terms of the product of mean particle densities, which we 
shall henceforth refer to as the "mean field" approximation. Their  main result 
is that  the distribution of the procuetion of C particles, i.e. the reaction front, 
has a scaling form in the large time limit. In particular, the width of the front 
behaves as W ( t )  ~-- t 1/6. 

The r61e of fluctuations in this system has been investigated within several 
approaches. 

1. A. Cellular automata simulations[ll,  12] 
2. B. Scaling theories[10, 12] 
3. C. Mapping on quantun Hamiltonian systems[13] 

The main results of these approaches is that the fluctuations play an im- 
portant  r61e in two dimension d _< 2. However, a precise determination of the 
exponents by numerical simulations can be a very difficult task. Indeed, very 
slow transients can be present and one is never sure if the true assymptotic 
regime has been reached. Accordingl-y, it is useful to consider a different, but  
related model in which the front is stationnary. 

3.2 T h e  s t e a d y  s t a t e  p r o b l e m  

One considers the more general reaction-diffusion system m A  + n B  --~ C. One 
study[14, 15] the scaling behavior of the front formed in the steady state reached 
by imposing antiparallel current densities (henceforth just "currents") JA = 

~'~IJL and JB = - n l J I  of A- and B-particles at x = - o c  and x = +oc respectively. 
This situation is much easier to investigate, since the front is no longer time- 
dependent and there are only three relevant parameters (d, diffusion constant D, 
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reaction constant k). However, the results for the scaling exponents and critical 
dimension may be directly applied to the time-dependent case, where the front 
is formed quasistatically by currents cx t-½. One finds[15] the surprising result 
that  dimensional analysis, coupled with consistency arguments, are sufficient to 
show that the critical spatial dimension is d~ = 2 / (m + n - 1). Above de, the 
scaling limit J ~ 0 is equivalent to the mean-field limit k --* 0. For d < d~ scaling 
is equivalent to k --* cxD, and one finds an exact prediction that corresponds to 

1 in the time-dependent case for d = 1, (m, n) = (1, 1). The theoretical 
predictions are well supported by numerical simulations for several values of 
n and m. This approach shows clearly that there is only one length into the 
problem. However, one has to keep in mind that the above results are derived 
under the as sumption that the front is formed quasistatically. 

4 L i e s e g a n g  s t r u c t u r e s  

4.1 P h e n o m e n o l o g i c a l  d e s c r i p t i o n  

A more complicated class of problems concerns Liesegang patterns formation. 
These patterns are produced by precipitation in the wake of a moving reaction 
front. 

Typical experiments exhibiting such a pattern formation consist of a test 
tube containing a gel in which a chemical species B (for example AgN03 ) is 
uniformly distributed with concentration b0. Another species A, with concen- 
trat ion c~0 (for example HC1) is allowed to diffuse into the tube from its open 
extremity and chemically react with B. As this reaction goes on, formation of 
consecutive bands of precipitate (AgC1 in our example) is observed in the tube, 
provided that the concentration a0 is large enough compare to b0 so that  the 
reaction propagates in the tube. A striking feature of this process is that ,  after a 
transient: time, these bands appear at some positions xl and times tl that  obey 
simple laws. More precisely, it is first observed that the center position x~ of the 
n th band is related to the time t,~ of its formation through the so-called time law 
x,~ ~ ~ .  Second, the ratio p~ =_ x ~ / x ~ - l  of the positions of two consecutive 
bands approaches a constant value p for large enough n. This las t 'property is 
known as the Jablczynski law[16] or the spacing law. Finally, the width w,~ of 
the the n th  band is an increasing function of n. The presence of bands is re- 
lated to the geometry of the experiment, i.e the use of a test tube with axial 
symmetry and most of the experiments ~have been performed in this case. How- 
ever, for more complicated geometries, different shapes may be obtained. A well 
known example is provided by the rings formed in agate rocks[16],[17],[18]. In 
the reaction-diffusion process described above, the reaction front position x] ( t )  
obeys the relation x / ( t )  ~ x/t, with an amplitude depending on the difference 
of the concentrations a and b. This behavior is mainly a consequence of the dif- 
fusive character of the motion of the particles. As the Liesegang patterns are 
formed in the wake of a moving reaction front, the time law appears to be a 
simple consequence of the diffusive dynamic. However, spacing and width laws 
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are not a direct consequence of a simple reaction-diffusion dynamics. To pro- 
duce patterns which are not infinitely slim, it is crucial to introduce an extra 
nucleation-aggregation mechanism. The formation of Liesegang patterns have 
been investigated by many researchers, both from an experimental and a theo- 
retical point of view. The models proposed so far belong to three categories[19]: 
sol coagulation models, competitive particle growth models and supersaturation 
models. None of these models are able to account for all experimental observa- 
tions. For example, particular situations, called inverse banding [20] where the 
distance between successive rings decreases as time increases are not directly 
explained by these models. New ingredients, expressing the capacity of the gel 
to dissolve the precipitates should be introduced. However, one believes, fol- 
lowing Zeldovitch[21], Dee,[22] and Le Van et a1.[23] that  the supersaturation 
mechanism based on Ostwald ideas plays a crucial role in the band formation. 

In the most recent scenario proposed by Dee[22], the two species A and 
B react to produce a new species C which also diffuses in the gel. When the 
local concentration of C reaches some threshold value, nucleation occurs. The 
droplets of nucleated particles (let us call them D) formed at the reaction front 
deplete their surroundings of the reaction product C. As a result, the level of 
supersaturation drops dramatically and the nucleation process stops. After some 
time, the reaction front has moved away and the concentration of product  at 
the moving front reaches a value large enough allowing the nucleation to occur 
again. As a result, separated bands will appear. The above two scenario has been 
investigated at the mean-field level[22]. However, in view of the importance of 
the fluctuations in such systems, one would like to consider such models at 
a microscopic level. This has been done recently[17], [18] in term of cellular 
automata  models. 

4.2 A ce l lu la r  a u t o m a t a  m o d e l  

The model is defined on a two-dimensional square lattice. For the axial system 
(test tube), the initial conditions are the following: at time t = 0, the left part  of 
the system (x _< 0) is randomly occupied by A particles, with a density a0 and 
the right part (x > 0) is filled with B particles with a density b0. 

The particles are restricted to move along the main directions of the lattice, 
according to a discrete time clock. The particles which meet at a same site 
interact or transform according to the following rules of the cellular automaton.  
Four basic mechanisms are introduced in our modeh 

1. (i) diffusion 
2. (ii) reaction 
3. (iii) spontaneous precipitation 
4. (iv) aggregation 

Diffusion corresponds to a simultaneous random walk of all particles on the 
lattice[24]. We wilt use four bits at each site to represent the particles of each 
diffusing species. Each of these four bits describe the absence or the presence of a 
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particle of the given species traveling in one of the four possible directions of the 
lattice (up, right, down or left). Our dynamics is such that it never happens that  
two or more particles of a given species enter simultaneously the same lattice site 
in the same direction. This fact (known as an exclusion principle) guarantees that  
four bits are enough, in two-dimensions, to describe each species at any time. 

In absence of diffusion and reaction, the particles would simply move in 
straight lines, hopping at each time step to a neighboring site. Diffusion is pro- 
duced as follows: at each time step, the four bits representing the configuration 
of particles entering at each site undergo a random permutation. In practice, we 
simply consider a random rotation (of 0, 7r/2, 7r or -~r/2) of the lattice direc- 
tions. Then, the particles move to a next site of the lattice, according to their 
new velocity direction. In this way, the number of particle is conserved during 
the updating and the exclusion principle is always obeyed without having to 
deal with conflicting particle motions. The probabilities of each of the random 
rotations allow us to adjust the diffusion coefficient of each species. 

The production of C particles takes place according to the reaction A + B 
C. At the level of the cellular automata rule, this process is modeled as follows: 
when two particles of species A and B collide at a given site, they disappear 
with some given probability k and produce a C particle. This reaction is only 
possible if there is still room for this new C particle (the exclusion principle 
restricts their number to four at each site). If no reaction takes place, the two 
initial p~trticles ignore each other and continue their own motion. It has been 
shown [25] that the above microdynamics reproduce the usual reaction-diffusion 
equations when a mean-field approximation is introduced. 

Nucleation and aggregation phenomena are implemented in our model ac- 
cording to general principles of supersaturation theory. 

First, the C particles, once created, will diffuse until their local density, com- 
puted as the number of particle in a small neighborhood, reaches a threshold 
value Kps. Then, they spontaneously precipitate and become D particles at rest 
(nucleation). We have considered 3 x 3 neighborhoods centered around each site. 
Larger neighborhoods could possibly be envisaged, but they would have the 
tendency to average too much local density fluctuations. 

Second, the C particles located in the vicinity of precipitate D particles will 
aggregate provided that their density is larger than an aggregation threshold 
lip < A~p. A C particle sitting on the top of a D always becomes a D. The 
parameters Kp and Kps are the two main control parameters of the model. The 
introduction of these critical values refers to the qualitative models of solidifi- 
cation theory, relating supersaturation and growth behavior[19]. From a micro- 
scopic point of view, it is more common to describe the aggregation process in 
terms of a nbise reduction algorithm : C particles aggregate on a D cluster only 
after several encounters. In order to separate the different time scales in our 
mode ! (diffusion versus aggregation), it is more convenient to use the technique 
described above in terms of the threshold Kp. 

Exernples of bands are given on Figure 1. The three generic laws are well 
satisfied [17], [18]. 
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Fig. 1. Formation of Liesegang bands in a test tube, as obtained from the microscopic 
model described above. 

It is experimentally well known that Liesegang patterns are only found if 
the parameters of the experiment are thoroughly adjusted. Outside of the region 
where Liesegang patterns are formed, we have observed from our simulation that  
other types of patterns are obtained. These various patterns can be classified in 
a qualitative phase diagram, as discussed in [18]. 

Moroever, another interesting case is the formation of rings or spirals [18] ob- 
tained when the reactant A is injected in the central region of a two-dimensional 
gel initially filled with B particles (cylindrical sYmmetry ). An example is given 
on Figure 2. Here, a local defect produced by a density fluctuation develops and 
a spiral of precipitate appears instead of rings. 

Thus, such cellular automata model for the formation of Liesegang patterns 
are able to reproduce many aspects observed experimentally. A significant advan- 
tage of this approach as compared to other ones previously used in the literature 
is the fact that fluctuations are included. This can lead to solutions with bro- 
ken symmetry (spirals) that are experimentally observed and that  cannot be 
obtained in a theory based on deterministic equations. 

5 T u r i n g  p a t t e r n s  

Under certain conditions, reaction-diffusion systems can produce heterogeneous 
steady state spatial patterns which evolve by diffusion driven instabilities. These 
patterns, called Turing patterns [26] are characterized by an intrinsic wavelength 
independent of the size of the system.The domain of parameters space for which 
such patterns exist is called the Turing space. 

This is a facinating subject that we shall not develop here in details. We 
simply would like to make of flew remarks concerning the fluctuations. 

These systems are generally described by macroscopic equations for the evo- 
lution of the local average densities of the chemicals. This mean-field approxi- 
rnation neglects an important  element of the problem, namely the microscopic 
ttuctuations. Here again, probabilistic cellular automata models taking the fluc- 
tuations into account in a natural way have been introduced [27, 28, 29]. These 
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Fig. 2. Formation of Liesegang rings spiral in two dimensions. 

models capture the essential features of the problem but are simple enough to 
permit  large simulations. 

The fluctuations have two main effects [27]: 

1. i). The ~ r i n g  space is enlarged. 

2. ii). The evolution of the modes is drastically affected in short and interme- 
diate time regime. 

Some modes which grow exponentially with time in the deterministic theory do 
not have this exponential growth in the CA model. This can be understood in 
terms of couplings among the modes induced by the fluctuations. 
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6 Conc lus ions  

We have seen in the different examples treated above that  reaction-diffusion 
syt ems offer a vast choice of problems which can be approached by using many 
different theoretical tools. As often in nonequi!ibrium statistical mechanics, even 
to solution of the simplest models is very chalenging both from the experimental 
and theoretical point of view. 
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A b s t r a c t  We recall the main features of the fluctuations of self similar interfaces 
which can be observed in diffusion, invasion of a porous medium by a fluid, 
thin magnetic films of even corrosion patterns. The relations of this behavior 
with other physical problems like fragmentation of clusters, cluster dynamics 
of a lattice gas of particles, or some features of dynamical percolation is also 
presented. Finally its connections with interface depinning and growth of rough 
surfaces is discussed. 

1 I n t r o d u c t i o n  

There has been a considerable renewal of interest, these last years, in the analysis 
of interface motion in presence of disorder. Fluctuations of fronts can be observed 
in many physical situations like for instance fluid invasion in porous media [1], 
growth in systems with quenched disorder (magnetic domains [2], thin films 
corrosion [3], charge density waves [4]), diffusion fronts [5], some earthquakes 
models [6], spreading of various epidemics or forest fires models [7], or sandpiles 
models [8]. 

The physical observation of fluctuating interfaces can be made by looking to 
the evolution of the geometry with time (this is the most frequent case that  we 
shall discuss below), or of the injected flux in the case of fluid invasion [9], or 
looking to the time fluctuations of an electrical potential or of the conductivity 
in the case of mercury injection in rock [1, 10], to the time correlation of acoustic 
emission in the case of earthquakes [6], or to magnetooptics observations in the 
case of ultra-thin magnetic film [2], etc. 

Actually, all these phenomena can in general be grouped under a common 
behavior called self-organized-criticality (S.O.C) [11]. 

We shall essentially describe here the behavior of self-similar interfaces, for 
which the fluctuations are related to sudden connection (or invasion) of clus- 
ters, called bursts. The fluctuations of these self-similar interfaces, can be called 
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"interface bursting", to distinguish them from the fluctuations of self-affine in- 
terfaces, which are associated to "interface depinning". We shall also say some 
words on its relation with growing rough interfaces for which the randomness 
leads to such local pinning. 

Interface bursting can in general be described by ordinary percolation [12], 
while various models are probably necessary to describe interface depinning (as 
for instance directed percolation [13, 14]). The first studies involving interface 
bursting were made on diffusion fronts and concerned their possible relation 
with 1 I f  ~ noise generation, in particular in the case ofinterdiffusion in electrical 
contacts [5, 15, 16]. The case of fluctuations of invasion fronts was then considered 
[17-19]. Similar ideas, involving interface bursting of percolating structures have 
been also suggested to interpret acoustic emission in seismic phenomena [20]. 

Interface depinning is found in imbibition phenomena, dislocations in crys- 
tals, charge density waves, growth of magnetic domains, etc. It creates stationary 
self-affine structures, in which the kinetics consist in a succession of depinning 
from quenched impurities. Robbins and his collaborators showed [19] how the 
two approaches of drainage and imbibition could be related in the case of two 
dimensional fluid invasion. An other interesting model has been introduced by 
Tang and Leschhorn [13] and by Buldyrev et al. [14]. They propose directed 
percolation as a generic mechanism at least in two dimensions for interface pin- 
ning in media with quenched disorder: the depinning only occurs when the slope 
is large enough so that, when there exists a directed path of pinning sites, the 
growth never reaches high enough slope to tiepin the interface which then comes 
to a halt. We shall discuss later some relations between such interface depinning 
and interface bursting. 

The motion of these interfaces is very generally driven by a force which can 
be of a thermodynamic origin as in diffusion fronts (gradient of concentration 
of particles) or an external force as in fluid invasion (pressure applied to the in- 
jected fluid), in earthquakes (tectonic plates motion), in magnetic films (applied 
magnetic field), etc. 

In addition it has appeared to be very convenient to consider systems in which 
a gradient of concentration is present [12, 14, 21] because this automatically leads 
to an interface located in the criticM region, and because all the interface remains 
bounded. 

As it is related to connections and disconnections of percolation clusters, con- 
siderations on interface bursting immediately makes a link with other domains 
of the physics of clusters: From the general behavior of connection-disconnection 
processes it is easy to derive the kinetics of dilution (or growth) rates [22] and 
the fragmentation properties [23] of percolation clusters. Also, the same kind of 
process may be used to examine the dynamic percolation problem [24] in the 
extreme ease of a very fast diffusing tracer (or another species of particles) in a 
lattice gas of slow diffusing particles. 

This paper is essentially a survey of several former publications, but new 
unpublished insights on noise and dynamical percolation will be discussed. In 
section 2 we shall present the main results concerning interface bursting, consid- 
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ering both fluctuations of surfaces and fluctuations of mass. The consequence of 
these fluctuations on noise generation will be examined in section 3, and relation 
with self-organized criticality will be pointed out. In section 4, a Smoluchowski 
equation will be written which describes the cluster-cluster behavior in diffusion 
problems or the percolation with cluster size dependent dilution rates, while 
section 5 will be devoted to the consequences on the fragmentation of percola- 
tion clusters. The dynamic percolation problem of a very fast tracer in a slowly 
evolving lattice gas will be considered in section 6. Finally in section 7, we shall 
discuss the relations between interface bursting and interface depinning 

2 G e n e r a l i t i e s  o n  t h e  D y n a m i c s  o f  I n t e r f a c e  B u r s t i n g  

As indicated in the introduction we consider here essentially the fluctuation 
of surfaces of physical phenomena which can be mapped onto a percolation 
model. The interface has then a self-similar geometry which, depending on the 
particular situation and on the space dimension, corresponds to the hull (external 
perimeter), to the so called "Grossman-Aharony" perimeter (in d = 2) [25], or 
even to all the perimeters, of the infinite percolation cluster. 

During time evolution, bursts appear which are simply due to the connection 
or the disconnection of finite percolation clusters (diffusion case) or to the inva- 
sion of a finite percolation cluster by a fluid (drainage) or to the sudden reversM 
of magnetic moments of a finite percolation cluster, etc. 

In all these problems it has appeared that it is very convenient to have a 
gradient of concentration (diffusion) or of threshold of bursting sites (we call 
bursting site the site with largest radius in a drainage problem) as it gives, 
among other advantages, an upper limit to the size of the burst, and imposes 
the interface to be in the critical region. It is not the place here to enter into 
the details of the model which have been published in various places [12, 18, 26]. 
The gradient technique has been used in many other numerical studies where 
it proved to be extremely useful [21]. We shall only gives here the main results, 
taking as basic examples diffusion fronts (DF) and invasion fronts (IF). 

In quasi-static situation, the interface is fractal with dimension Df; this in- 
terface is for instance the external perimeter of the "infinite" percolation cluster 
connected to the source of particles (DF) or of injected fluid (IF), and due to 
the presence of a gradient its width remains bounded and equal to c~ft. It is 
located in the critical region around the concentration p = Pc. The clusters have 
themselves a fractal dimension D. 

When time evolves the structure of the interface changes either by connection 
or disconnection of a neighboring cluster (DF), due to the jump of a particle, or 
by invasibn (breakthrough via the easiest throat) of a neighboring cluster (IF). 
In both case the main theoretical framework is the same. 

The ingredients of the problem [15, 16, 18] are: 
a) The average number of clusters of size s, close enough to the front to be 

connected or disconnected in one jump (DF case), or the average number of 
clusters of size s close enough to the front to be invaded in one breakthrough 
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Fig.  1. In the left figure, the system grows by a succession of bursts (gray region), via 
a very localized breakthrough indicated by the arrow. The interface is self-similar, and 
the events (bursts) can be considered as independent; in the right figure, the growth 
can be better seen as a succession of depinning leading to a new interface equilibrium 
(limit of the gray region). The interface is self-affine, and the successive depinnings are 
correlated. In both cases the "source" (of injected fluid, etc.) is at the bot tom of the 
figures. 

( IF case). This number  is, in a region of  concentrat ion p, 

../V[s(p) -~ S-I-D'/DjT's ( (p -- p c ) S a ' )  p f ( x )  Cs(s/Smax) 

where ~r, = Dred/D = 1 / (vD) ;  p is the critical exponent  of  the correlat ion 
length; Cs is a cutoff funct ion which cuts the values of  s larger t han  8max; pf(x)  
is the probabil i ty to find the front at coordinate x along the direction of  the 
gradient  of  concentrat ion.  The  presence of  a cutoff in a region of  concent ra t ion  
p is due to existence of the gradient of concentrat ion Vp, which l imits the wid th  

of  the front  to c~ft: 

Sm x sM¢ ((p - 

with 8 M O( fig,  and @ = gft•P o( ~Tp 1/(l+v). 
I t  may  be needed to know the perimeter  f luctuat ions (case for instance of  

impedance  f luctuations of diffused electrodes). The  two results are related via 
the equali ty 

h 44 h (p) = s 34 ,  (p) 

In fact  the behavior  of 44h, the number  of  clusters with per imeter  h, was first 
considered [15]. 

We can use either scaling constraints [15] or a box count ing m e t h o d  [16] to 
determine this behavior.  

b) The  connection or disconnection of  a cluster of  size s, occurs at a f requency 
7r ° which depends on the number  of  red-bonds in a domain  of  l inear size Rs,  the 
main  radius of  an s-cluster, and 

o ~ s ,,p ( ( p _  7i" 8 .~- 
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This frequency "Ks ° is in fact a frequency per event, or more exactly per unit 
time when each event takes the same time 0. This was the assumption taken in 
ref. [15]. However, this is not the case, for instance, in invasion experiments: the 
time 0s of an event of size s, depends on the size s. 

c) Duration of individual events: 
Each event is supposed to take a time 0~ depending on it size and in general 

it follows a power law in s. Let us take two examples: 
- Fluid invasion of a cluster: just after a breakthrough, the pressure sufficient 

to push the invading fluid though a connecting throat,  is larger than all the 
capillary pressures associated with all the throats of the cluster which is invaded. 
We can allow that  the flux ~ through the connecting throat remains constant 
and that ,  

0~ ~_ SVpore 
~O 

where Vpore is the average volume of a pore. 
- Domain walls of ferromagnetic thin films (or in some cases, corrosion pat- 

terns): when a blocking spin has been turned over after a slight increase of the 
applied magnetic field, there is a cluster of spins connected to the blocking spin, 
such that  the energy to reverse these spins remains below the external energy. 
The  growth propagates in this cluster. A rough approximation is to say that  
the spins at a chemical distance l = 1, 2, 3, etc. (i.e. which can be reached in 
at least g steps) from the blocking spin are successively reversed, and that  each 
shell takes the same amount of time 0 to be reversed so that 

8 e~J = O~m~x 

where lmax is the average chemical distance of a cluster of size s: s = (£max) de, 
and 

Os ~ Os 1/d° 

where de is the spreading dimension. For percolating cluster de -~ 1.68 (d = 
2), 1.88 (d = 3). 

So, in general 

Os ~- Os ~ 

The event frequency per unit time and per cluster of size s is then 

,.~ 0 0 
"ffs ~ "Ks ~ "  

$ 

d) The number Nev(s) of events per unit time: 
It can be immediately determined from the above quantities after integration 
over spatial domain (i.e. along coordinate x, the direction of the concentration 
gradient in a d-dimensional system of size L) 

Ne~(S) = L d-t / dx.M,(p)'K,(p) 
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which can be shown to have the following behavior [15, 18]: 

Nev(s) = L d - l s  - y ' - '  I V W  N 

where ~ g  = ( D f -  d+  1)u/(1-t-u) is the exponent of the front surface dependence 
on the gradient of concentration [27] (see [12] and [26] for more details). 

It has been shown when studding the case of invasion percolation [18] that  

Dr - Dred 
Y s = l +  

D 

where Dred ----- 1/v is the exponent of the dependence of the disconnecting bonds 
(red-bonds) or of the connecting bonds (anti-red bonds) with the size of the 
window of observation. This expression for Y8 has been checked numerically in 
d = 2 and is determined exactly in a mean field approach, that  is in any d _> 6 
(see the discussion in ref. [22]). 

Fig. 2. Shows the various dimensions which appear in the bursting exponent. The burst 
is suppose to begin at time t, and to finish at t + 8.. The fractal dimension Df shown 
here is the one of the external perimeter (and the internal holes have been discarded). 

The function Ks (S/Smax) is a cutoff function which cuts the clusters whose 
size is larger than SM o((~ft) D (see [15]). 

The fluctuations of the front surface were in fact calculated first [15, 16] and 
gave for the number Nev(h) of events with perimeter (or surface in d = 3) h the 
result 

Nev(h) = Ld-lhYh-eD/D' ,Vp,°~N l '(h(h-~) 

Here 
Dred 

Yh = 2 - -  - -  
Df 

and Kh is a cutoff function which cuts the clusters whose perimeter (surface in 
d = 3) is larger than (erft)D'. 
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Table 1. The possible values of the fractal dimension Dr, entering in y~ or in Yh. 

Df d = 2  d = 3  

External perimeter 
Grossman-Aharony 
perimeter [25] 
Total perimeters 

Dh = 7/4 

De = 4/3 

D = 91/48 
(D ---- 1.82 (invasion)) 

D ~ ---- 2.52 

3 N o i s e  G e n e r a t i o n  

To find the noise behavior of fluctuating fronts, we need to know the auto- 
correlation function of these fluctuations. We shall follow here the lines of the 
calculations in ref. [15] and [28]. 

Let Ns(t) be the mass of the cluster connected to the source. Ns(t) is sup- 
posed to be a stationary process as t evolves. In the case of fluid invasion 
(N~ (t)) increases with t, due to the injection of fluid. In the case of diffusion, 
the jump time is much smaller than the diffusion time and (Ns(t)) can be con- 
sidered as constant during the characteristic fluctuation time to. Very generally 
Ns (t) - (N, (t)) can be considered as stationary. 

The variance of the increments of N~ is defined by, 

( n N , ( t )  = + to) - N , ( t ) )  

The stationarity is well verified numerically as long as t is not too large (com- 
pared to tc). 

Following [15] we find, 

<'4Ns(t)2> = Ld-12 / dx E s2M'[1 - exp(-2~rst)] 
$ 

which gives after integration over x, using an effective field approximation, 

k M /  $ 

with ~ = Bs D'~d/D-e, while the correlation function is, 

Ld-1 
+ to) V,(O) - 2 

z 8 

$ 

In these expressions the important  hypothesis is that successive events are 
independent, so that the correlation is a sum of exponential functions of time. 
This independence has been well verified numerically [15]. The spectral density 
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is then a superposition of lorentzian functions. Replacing the sum over s by an 
integral gives, 

'M . 2BsP 
S(w)  -~ A as4B2s2a + w2 

, l S r n  

where 
sm is the lower cutoff of the cluster size (s~ = 1), 
SM is the upper cutoff of the cluster size, 
A = L d-1 [Vpt -aN K,(0) ,  

B = const, 
p = 1 - (Of - Dred) /D  - ¢, 
O" = Dred /D  - ¢. 

The question is now, does there exist 1 / f  ~ behavior, with 0 < a < 2 ? 
There are two cases, depending on the sign of ~, with three regimes in each 

case: 

a) when 0 < ¢ < Dred/D (i.e. g > 0): 
i) i fw < 2B(s ,~) ' ,  then S(w) ~ const. 
ii) if 2B(sm) ~ < w < 2B(sM)  ~, an elementary calculation shows that  S(w) 

has the following behavior 

S(w)  = Co~o(1+p)/o-2 + C1 + C2~ 2 + . . .  

and the condition of existence of 1 / f  ~ noise is 

2D < Df + D r e d  - -  t D  

which is never satisfied because Dr, Dred < D, and ¢ > 0. 
iii) i fw > 2B(SM)  ~, then S(w) -~ w-2,  i.e. the noise is Brownian. 

b )  when ¢ > Dred/D (i.e. c~ < 0): It  is convenient to make the change s ---* 
I /u ,  so that  we obtain a similar integral for S(w)  only by changing s,~ ---+ 
1/  SM , SM --+ 1~Sin, p ---+ --p -- 2, cr ---+ --or, 
i) If  w < 2B(sM)  ~, then S(w) -- const. 
ii) If  2 B ( s M )  ~ < w < 2B(sm) ~, then again 

S(w)  : Co~) ( l+p)[ ' -2  --[- C 1 + C2¢d 2 -[- . . .  

but the condition of existence for 1 / f  ~ noise is 

2D > Df + Dred -- ~D 

which is always satisfied. 
iii) I f w  > 2B(sm) ", then S(w) ~ w -2, i.e. the noise is Brownian. 

To summarize: 

o When ~ < Dred/D,  there never exists a domain with a 1 / f  ~ noise [28]. At 
low frequency the spectral density is white noise, while at high frequency it 
is Brownian noise in 1 / f  2. This is in contradiction with our previous claim 
[15, 16] that  the low frequency regime was 1 I f  noise. 
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S(co) I ~: < Drea/D 

G > 0  
white noise 

CO C 

= 2B (SM)° 
ca 

s(co) I s  > l~ed/D + 2 - Df/D 

white noise 
~ < 0  

(0 c co' c o,1 

= 2B (SM)~ = 2B 

Fig.  3. Spectral density of interface bursting, in two different regimes. For large enough 
e, a 1 / f  noise could in principle be observed. In the figure on the right, the condition 
on e is such that a < 2. Negative values for e are in general unrealistic. 

o W h e n  ~ > Drea /D  (Dred /D  ~- 0.4 (d = 2), 0:45 (d = 3)). 
There  exists three behaviors: 

o white noise at very low frequency when w < W c M  with W c M  : 2 B ( s M )  ~ 

o 1 / f  ~ noise when 03cM < W < ~crn with w~m = 2B(s,~) ° = 2B and 

2D - Df 
a = l +  

~D - D r e d  

o 1 / f  2 noise at high frequency when Wcm < w. 

However 1 / f  ~ noise can be observed only when 0 < a < 2, tha t  is to say when 

Df - Dred 
~ > 2  

D 

This is not  case in the examples given in §2c. 

4 R a t e  E q u a t i o n  o f  t h e  C l u s t e r  D i s t r i b u t i o n  

Suppose we want  to s tudy the evolution of the number  of clusters of size k in a 
bond  percolat ion problem in which the bonds are removed or added at r a n d o m  
at a given rate  R. To establish the rate equation it is na tura l  to use the results 
of  section 2, which gives the number  Nev(i)  of events of size i per uni t  t ime. 

Let us first consider a large cluster of  size k at the critical concentra t ion Pc, 
broken into i and j daughters  (i + j + 1 = k, as one bond  disappears).  We know 
tha t  the probabi l i ty  of  this event (i << k) is Nev( i )  o¢ 1-3?~,  where 3)' takes into 
account  the fact tha t  the daughter  clusters are obtained by removing a b o n d  
belonging to the perimeters  (internal and external) of the initial cluster: hence 
Df = D and 

Dred 
y ' = 2 - - -  

D 
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(a) ~ (b) 

Fig. 4. Connection (black arrow) and disconnection (gray arrow) processes between 
finite clusters; in figure (a), the process only involves external perimeters (Dr = D~ or 
Dh), in figure (b), the process involves external and internal perimeters (Dg = D) (see 
the table in section 2 for the definitions of the various Df). 

For scaling and symmetry  reasons one expects then that  the breaking probabil i ty 
takes the form 

i-Y:(k-,i)-Y'~k___y, S (~  ' -kk-i) 

yl y~ 
which is such that  i -  , (k - i ) -  , • , k-y" --+ ,-Y~, when k --+ ~ .  
S is a symmetrical  scaling function, with zero degree of homogeneity. 

The contribution of this event to Onk/Ot, the rate of removing k-clusters 
is then proportional  to (i(k - i ) / k )  -y', times kn~ the probabil i ty to be on a 
k-cluster. 

At the critical concentration, Smoluchowski rate equation follows immedi- 
ately [22]: 

Onk _ 1 

i + j + l = k  

oo 

Z ( K k j n k n j  -- Fkjnk+j+l) -- Kknknoo + Fkn~ 
j=0 

n ~  the probabili ty to be on the infinite cluster. 
As we just  noticed above, the corresponding expressions for Kij(i ® j 

i + j + 1) and Fij(i @ j ~ i + j + 1) are obtained (in fig. 4, black and gray 
arrows respectively), by symmetrizat ion of the preceding results, In the case the 
bonds are added or removed at random with the same probability, we find at 
the critical concentration pc, 

£,j=(i+j+l) i + j + l  s 
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An explicit exact expression for Fij can be obtained in the case of the Bethe 
lattice with coordination z [29], when i , j  >> 1: 

F.B.ethe = ( i - t - j  + 1 ) 
i + ) - +  1 V~z(z 2) 

The coalescence coefficient, IQj, can be obtained using a detailed balance as- 
sumption (the equilibrium distribution is that of static percolation): 

ni+j+l ij 8 l ' 
K , j - - F i i  eq e q -  i + ] - F 1  i + j +  i - t - j -F1  f(0) n i nj 

where f is the scaling function of the cluster distribution, nseq(p) ~ s -1-d/D 
f[(p-p¢)81/(~D)]. Kk and Fk have a similar behavior and represent the connection- 
disconnection probabilities from a front of diffusion (the infinite cluster). The 
Smoluchowski equation is valid as long as the initial distribution is a random 
distribution of bonds. Notice here a problem for the case of site dilution, because 
removing one site can generate more than two clusters [30]. However, this effect 
seems marginal, and was not observed in the case of fluctuations of diffusion 
fronts [15, 16], at the precision of our numerical simulations. 

An interesting behavior concerns the case when the rate of removing bonds 
is different from the rate of adding bonds. Then, p becomes time dependent, 
but .the cluster distribution follows adiabatically the percolation distribution if 
removal and addition of bonds is made at random. 

The above equation must first be generalized to arbitrary concentration p. A 
scaling factor, u [(p - pc)i ~] u[ (p -p~) f f ] /u[ (p -pc) ( i+ j+ 1) ~] is then expected in 
F (~ = 1/vD),  while in the above equation giving KiN, l / f ( 0 )  must be replaced 
by the p-dependent scaling functions f ,  which insures the stationary equilibrium 
constraint. 

If v is the relative rate of removing particles, and R(t) the general time 
dependent rate of removing or adding particles, the Smoluchowski coefficients 
now become 

~i j  = (1 - r)R(t)Kij;  Fii = rR(t)Fij  

Such an equation has been studied by Kerstein [29], in the case r = 1, for 
the Bethe lattice. 

5 F l u c t u a t i o n s  o f  F r o n t s  a n d  F r a g m e n t a t i o n  

The knowledge of the connection-disconnection behavior of percolation clusters 
permits not only to establish a Smoluchowski's rate equation of the cluster dis- 
tribution, but also to determine the fragmentation properties of the percolation 
clusters [23] (see preceding section). 

Recently, Gyure and Edwards [30] presented a scaling theory for the frag- 
mentation of percolation clusters by random bond dilution. They define the 
ensemble average number as of "fragmenting" bonds on a cluster of mass s, and 
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the probability bs,,~ of obtaining a daughter cluster of mass s I by fragmentation 
of a cluster of mass s. By "fragmenting" bonds they mean any bond which, when 
removed, separates the cluster into two pieces. 

At the percolation threshold for large enough sizes s and s ~ the two functions 
as and bs,,s are assumed to obey scaling forms 

a s (x  8 A 

These assumptions were checked analytically on two exactly solvable case, d = 1 
and the Bethe lattice, and numerically on a 1200 x 1200 square lattice [30]. The 
exponent A is always observed vary close to unity, while the exponent ¢ is found 
to obey the relationship 

6 =  l + A - c ~ ,  

where rrs = 1/(vD).  The numerical evaluation of ¢ in the d = 2 square lattice 
(¢ = 1.600 + 0.006) agrees well with this relationship. 

Now to estimate ¢, we only need to compare the expression for bs,,s with the 
expression we derived above for the Smoluchowski equation. This immediately 
leads to, 

C-y;  = 2 - ~ s  

Comparing the two last relations leads to A = 1. 
This confirms the conjecture of Gyure and Edwards that  A should be equal 

to unity [23]. 

6 D y n a m i c a l  P e r c o l a t i o n  

When two types of particles diffuse together on a lattice and have different jump 
probabilities, we are faced with a complicated problem which includes as a limit 
the case of diffusion of particles in percolating structures (the case when one 
species has a large jump probability, and the other a negligible one). Such a sys- 
tem is modernized by the so-called "Dynamical Percolation" model introduced 
by Druger, Ratner and Nitzan [24]. When the jump probabilities are not too 
different, a mean-field treatment is possible. When the jump probabilities are 
very different, again a mean-field treatment is possible far from the percolation 
threshold pl c of the sites unoccupied by the solver species. Hence the anomalous 
case is the case of a fast particle diffusing in presence of very slow particles close 
to the percolation threshold pt c. 

We shall examine here the main features of this anomalous diffusion of the 
fast particle. We suppose that at time tn the particle is on a cluster (of empty 
sites, see fig. 5) of size in and r a d i u s / ~ .  Due to its large diffusion coefficient, 
its density probability becomes uniform on the/n-cluster  before a particle of the 
cluster perimeter makes a jump. If at time tn+] the i,~-cluster breaks into two 
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parts  in+l and (in - in+t),  the particle becomes trapped in one of these pieces, 
say in the in+l-cluster. The probabili ty of this event is, 

in+l (in > in+]) Fi.+l,i,~-i~+l in 

The factor in+l/in is the probabili ty to fall precisely into the daughter in+l.  

Fig. 5. In the dynamical percolation model two species with different jump probabilities 
and hard-core exclusion diffuse on a lattice. We consider here a very fast particle (the 
small white disk p which can visit any comaected regions) diffusing in presence of slow 
particles (large black disks). Very rapidly the distribution probability of the white disk 
becomes homogeneous inside the allowed cluster (the gray region). If the black particle 
n°l  jumps, the door is open to the fast particle to diffuse inside a new neighboring 
cluster of empty sites (here the corresponding cluster percolates); if the black particle 
n°2 jumps, on the contrary, the cluster is broken into two pieces, and the fast particle 
p becomes trapped in one of these pieces. 

We can roughly localize the particle at the position of the center of mass of the 
clusters. Hence during the above process we can say that  the particle makes 
a j ump  of length IRi, - Ri,+ 1 h in an arbi trary direction. The second possible 
process at t ime tn+l is the connection of the/n-cluster  to a cluster of size i,~+1 - 
in leading to an in+l-cluster. Here again the particle makes a j ump  of length 
IRi~ - Ri,~+l l; and the probabili ty of this event is now (the cluster distribution 
ni is at equilibrium), 

F "  . . . n i , ~ + l  ~i.~,i,~+~-z.n,.+a-,,~ = Fi.~,i.+l-i. (in < in+l) ni,~ 
The probabil i ty of a jump of size [Ri. - Ri.+l [ is then proport ional  to (the factor 
S is omitted),  

in+a(in+l(i'!-'2-in+t)) - y ' \  'n (when in > in+l) 
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or 

(in)d/D(in(in.+--~-l--in)) -y" (when i n < i n + , )  
in ~ \ Zn+l 

These distributions of probability are dominated by a power law behavior for 
low values of ]in --in+l], and varies like ( 1 -  imin/imax) -y], where imax = 
max{in, in+l) and iml, = min{in, in+l}. The corresponding jump sizes are 

V = IRi,, - Ri, ,+, l  ,~ (imax) l ID  --( i ra in)  l ID  {1-(imin/imax) l / D )  

The probability to have a jump of size U then follows a power law, 

P(U) ..~ U -by" 

The diffusion process in this extreme case for dynamical percolation is then 
a Levy flight process. When the situation is not at the threshold p~ of the empty 
sites, one expects a Levy flight up to distances smaller than the correlation 
length ~ of these empty sites, and a Rayleigh flight (Brownian motion) at larger 
distances. It can be noticed that if the fast particle is an electron jumping from 
an atom to its neighboring atoms, the clusters to be considered are the clusters 
of atoms themselves. In the case of many fast particles with only hard core 
interactions, the problem is the same if we consider only the collective diffusion 
coefficient of these fast particles. 

7 R e l a t i o n s  B e t w e e n  I n t e r f a c e  B u r s t i n g  a n d  I n t e r f a c e  

D e p i n n i n g  [32] 

The crossover between invasion percolation and the Eden model has been stud- 
ied in the middle of the 80ties and it was realized that invasion percolation 
had anomalous fluctuations which were absent in the Eden model [33]. These 
anomalous fluctuations are present in systems in which there is a pinning of the 
interface. This aspect has been studied only recently, and it is not clear at the 
moment whether all the growths of rough surfaces with quenched disorder belong 
to the same universality class, depending on the type of experiment performed. 

For instance, concerning the roughness of the various self-affine interfaces 
described in the literature, the situation is far from being clear. From the exper- 
imental point of view, the roughness exponent is found equal to a ~ 0.81 in fixed 
rate invasion of a 2d Hele-Shaw cell filled with glass beads [38], to a = 0.73 + 0.03 
with a similar system [39], but also between 0.65 and 0.91 [40], and finally equal 
to a = 0.65 =E 0.05 [14, 41] in imbibition of blotting paper. We shall describe 
some simple models of growth of pinned interfaces. 

In the case of fluid invasion of porous media, Robbins and coworkers [34, 
35] pointed out the existence of critical contact angle 0c, leading to a bursting- 
depinning transition. They propose a {0, P} phase diagram (P being the applied 
pressure) separating static and moving interfaces (but moving slowly enough to 
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avoid viscous effect in the dynamics): when 8 > 0c, the interface is described by 
invasion percolation and there exist a critical pressure Pc(O) above which bursts 
appear. When 0 < ~¢, the interface is described by a self-affine structure with 
a rough interface. In reference [19] the motion of the interface is studied and it 
is suggested that the expression obtained for Nev(s) (recall section 2) applies if 
we take D = d (compact growth) and Df = d -  1 (i.e. only the global dimension 
of the self-affine surface plays a role), while p remains equal to the correlation 
length exponent of percolation. The behaviour is checked numerically and agrees 
well with this choice for Df and u, but other values could have even taken, as 
there is no precise justification for this choice. 

The roughness exponent a [32] has been only found numerically [35] and no 
relation to the above exponents, D, Df and Dred, has been proposed up to now. 
Martys et al. found c~ = H ~ 0.81. In addition, in the depinning regime (0 < 0c), 
the entire surface progresses coherently, in contrast to the bursting regime where 
each part  of the interface grows almost independently. This behavior is certainly 
in agreement with the spectral density of the time fluctuating events: in the case 
of interface bursting, the events are independent and a 1/ f  2 noise is found at 

Fig. 6. The invasion of a porous medium (constituted of black spheres of random sizes) 
by a fluid (in gray) is strongly dependent on the contact angle 6 (depending on the 
mutual wetting properties of the three components, the displaced and invading fluid 
and the porous medium). In figure (a), the invading fluid is strongly non-wetting, and 
invasion of two nearest neighboring throats is uncorrelated: "drainage" is modeled by 
invasion percolation, and only depends on the radii of'the throats. In figure (b) the 
contact angle is now smaller, there exist an overlap during the invasion of nearest 
neighboring throats, which correlates the evolution of the invading fluid [34]. 

high frequency. This is not what is observed in the depinning case when wT >> 1 
(T is the time for the interface to move over a distance ~ and it can be compared 
to the characteristic time 1/(2Bs~) in section 3); the authors found S(w) o¢ ,~-a 
with a -~ 1.55 [36]; a theory, taking into account the coherent growth, remains 
to be found to explain this value of a, but this is a very interesting point which 
will be discussed at the end of this section (see fig. 10). 

In another recent paper [37] it has been shown that the same kind of transi- 
tion could be observed in random three dimensional magnets. The hamiltonian 
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i ~ l  I I I I 

' ~ Moving 

1 Static ~"~" " 

I I I I I 
2 3 4 5 6 /,, 

faceted self-affine [ s e l f - s i m i l a r  ] 

z ~ = 2  ~ = 3  zh = 4.4 

Fig. 7. Growth of interfaces in three-dimensional Ising ferromagnets with random field 
interactions. The random field distribution has a width ,5; when the randomness is low 
(A < 2.42), the interface is faceted , it becomes self-affine at intermediate randomness 
(2.42 < ,4 < 3.41), and self-similar in a strongly random field (`5 > 3.41). the cor- 
responding phase diagram is shown in the above figure: the drift due to an external 
field H, has a critical value which separates the moving region from the static one 
(depinning force) [37]. 

is that  of the standard Ising model with quenched random disorder, 

{i,j) i 

where the Ising spin on site i takes the values & = ±1, H is the external magnetic 
field, and hi represents the random field, which is described by a uniform random 
distribution between - A  to A. Three types of growth nay be found (see fig. 7): 
percolative structures with interface bursting in strongly disordered systems, self- 
affine structures with interface depinning in systems with intermediate disorder; 
and finally faceted growth for weak enough disorder. The roughness exponent 
in the self affine structures is found around 2/3 (no self-affine growth can be 
observed in d = 2 random magnets). 

An interesting model has been proposed [13, 14, 42, 43], in particular for the 
blotting paper imbibition experiment [14], which is related to directed percola- 
tion [31] in a similar manner as interface bursting was related to percolation. 
In particular it was found that a = u±/ull ~ 0.63, in close agreement with the 
experiment. In this directed percolation model, Leschhorn and Tang [44] have 
investigated the generation of avalanches and their correlations. They found and 

130 



Interface Bursting and Interface Depinning 

Fig. 8. Experiment of imbibition of a piece of blotting paper by a dye (ink). Capil- 
larity leads to a rough surface, which stops growing when evaporation (and gravity?) 
balances the incoming flux. The interface profile is digitalized. Very few overhangs can 
be observed along this interface [14]. 

avalanche size distribution with a scaling form similar to that of Nev (s), i.e. 

with/C = 1.25 + 0.05, and a cutoff size So (the cluster is compact in d = 1 + 1 
dimension) given by 

SO O(¢]](yl0min) ¢±(//0ain) 

where 0 /']min is the value of the weakest force on the interface. 
The value of/C is slightly larger than the value 1.125 obtained when setting 

D = d, Dr = 1 and u = 4/3 in Ys [19]. Indeed, the situation is now very different; 
the system is anisotropic and the events are correlated. The theory relating/C 
to the other exponents remains to be established. 

The introduction of directed percolation can be understood from the simple 
model described in figure 9. The main idea is the filling of the overhangs. A 
direct explanation of this constraint leads to the existence of a smoothing force 
(similar to the one showed in fig. 6b). Nevertheless it must be pointed out that  
the definition of overhangs supposes the existence of a privileged direction (here 
the vertical direction). This can be the consequence of the initial horizontal 
state, but  then the growth is supposed not to present large slopes: this also can 
be a consequence of the gravity field. In any case, few overhangs are effectively 
observed experimentally. When an overhang is filled then the invasion of new 
regions of the disordered medium is possible. This can be verified in figures 9 
and 10. 

In figure 10, we examine the depinning of the interface stabilized along a line 
of strong pinning defects (directed percolation path). Increasing the driving field 
(this could correspond to immersing the paper more deeply in the ink), depinning 
of blocked sites appears. Depending on the order in which the depinning is 
done, various regions are successively invaded (see fig. 10). We suggest that  this 
correlation could be at the origin of the anomalous exponent (i.e. different from 
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Fig. 9. The model by Buldyrev et al., is a modified invasion percolation process, in 
which the interface grows with erosion of the overhangs. This is shown in the four 
upper figures: the unblocked sites are invaded progressively. When an overhang appears 
(t = 2), not only the unblocked site is invaded but also the blocked site below. This 
may allow the invasion of disconnected clusters of unblocked sites, as can be verified on 
the figure below. The invasion stops when the interface reaches a directed percolation 
line of blocked sites (which by definition has no overhangs) [14]. 

2) in the noise found by Nolle et al. [36] (note however that  their model is very 
different, overhangs are possible), and by Leschhron and Tang [44]. 

To conclude with this yet very open domain, we shall quote a very recent 
paper  by Roux and Hansen [45]. They examine a simplified version of the Cieplak 
and Robbins model [29, 33]; The curvature (Yi-1 - 2y~ -4- yi+l) at any site of 
the front is supposed to be the relevant physical parameter .  I t  is bounded by 
a quenched random threshold at any site. The authors also find a roughness 
exponent around ~ = 0.86 -4- 0.03 (for a system size L = 512). I t  falls to 0.75 
when L = 128 as observed in ref. [39]. The authors suggest tha t  this is an 
effective roughness exponent, the real exponent c~ (which can only be obtained 
from the spatial derivative of the front or from its power spectrum) would lie 
between 1 < ~ < 2: typically o~ ~ 1.2, the roughness being a roughness of the 
slopes. 

In conclusion, whereas interface bursting seems at present relatively well 
understood this is not quite the case for interface depinning in spite of very 
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Fig.10. This figure shows the interface depinning in Buldyrev's et al. model [14]. Depending on the position of 
the depinning sites (1, 2 or 3), different histories are possible, showing the correlated behavior of the growth. 
Depinning in site 1 leads to invasion of only the ~ region. Depinning in site 2 leads to invasion of not only 
the p'2~! region but also the ~ region. The sequence {1,2} is possible, the sequence {2,1} is not. The same 
result appears with site 3. The growth process is then very different from the case of interface bursting. 

impor t an t  and interesting developments.  But  even, the t rea tment  of  interface 
burs t ing  remains  incomplete  in one respect: little is known about  the dynamics  
of  f luctuat ing interfaces in presence of interactions; this case is of great  impor-  
tance in soldering, in intercalation, etc. [46, 47]. Also, and this was out  initial 
purpose  when s tudying  fluctuations of  diffusion fronts, it would be of  real interest 
to  unders tand  the detailed behavior  of the f luctuations of  impedances  between 
a conduct ing  diffusion front and for example a planar  counter electrode. The  
behavior  of  an irregular (fractal) electrode is however now par t ly  unde r s tood  
[48]. 
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1 I n t r o d u c t i o n  

The equilibrium properties of a flexible polymer chain in a good solvent enclosed 
in a quenched random environment, such as a porous medium, appear to be both 
potentially relevant to various experimental situations and a controversial theo- 
reticM problem for almost two decades. Porous media are often fractals, which 
means that they display a self-similar distributions of voids (obstacles) over three 
to four orders of magnitudes in length scale. In a series of recent papers [1-7] we 
have adopted several families of fractal lattices as models of porous media, and 
studied the statistics of a polymer chain situated on such lattices. The statistics 
has been captured by the self-avoiding walk (SAW) model, implying that the 
appropriate criticality shows up at the critical weight (fugacity) of a single step. 
In this spirit, we have studied the end-to-end distance critical exponent u, and 
the critical exponent 7 (associated with the total number of distinct SAWs), in 
the case of three quite different fractal families: the Sierpinski gasket (SG) family, 
the plane-filling (PF) family, and the checkerboard (CB) family of fractals. The 
critical exponents have been calculated by three different methods - -  the exact 
renormalization group (RG) method, the Monte Carlo renormalization group 
(MCRG) technique, and the finite-size scaling (FSS) approach. The obtained 
results proved valuable in explaining previous theoretical and experimental find- 
ings related to the controversial problem of SAWs in various disordered systems. 

The self-avoiding walk (SAW) on a lattice is a random walk whose path must 
not contain self-intersections. Its path corresponds to the shape of a linear flexible 
polymer chain, and in the case of a good solvent we assume that there is no 
interaction between two nearest-neaighbour nonconsecutive steps (monomers). 
In other words, we assume that the polymer is at high temperatures and that 
its configurations are determined by the excluded volume interactions. 

For explaining most of relevant experimental situations, including diffusion of 
polymers, it turns out that it is important to know the mean square end-to-end 
distance (R2), which for large N behaves according to the power law (R~v > --~ 
N 2", with u being the related critical exponent. The other pertinent quantity is 
the number of distinct SAWs (averaged over all possible starting points) that is, 
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for a large number of steps N, governed by the power law CN "~ #NN'~-I, where 
# is the connectivity constant, and 7 is the concomitant critical exponent. 

We have calculated the critical exponents v and 7 in the case of several 
different fractal families. First, we have studied SAWs on the SG family offractals 
whose each member can be labelled by an integer b, 2 < b < co, so that  when 
b ---+ oo both the fractal d/ = ln[b(b + 1)/2]/lnb and spectral dimension d, 
[8,9] approach their Euclidean value 2. Here we briefly recall the fact that  each 
member of the SG fractal family can be constructed in stages. At the initial 
stage (r = 1) of the construction there is an equilateral triangle (generator) 
that contains b 2 identical smaller triangles of unit side length, out of which 
only the upper oriented are physically present. The subsequent fractal stages 
are constructed self-similarly, so that the complete fractal is obtained in the 
limit r --~ co. In Fig. 1 we have depicted a piece of the b = 9 SG fractal lattice, 
together with a schematic representation of an infinite SAW. 

Members of the other two (PF and CB) families of fractals are enumerated 
by an odd integer b (3 < b < co), and are also constructed iteratively. Tha t  is, 
the construction process starts with a generator (r = 1) and continues in a self- 
similar way by successive (r ~ r + 1) enlarging the given stage of construction 
by a scaling factor b. The particular shapes of the generators for the PF and CB 
fractals are described and illustrated in references [3] and [4], respectively. As 
regards the fractal dimensions, it is important to notice that  all members of the 
PF family have the same fractal dimension dj = 2, whereas for the CB fractals 
df = ln[(b 2 + 1)/2]/lnb (implying that df ---+ 2 when b ---+ co). 

2 Methods  of Calculation of the SAW Critical 
Exponents  

For the first few members of each family of fractals under study, we have calcu- 
lated the SAW critical exponents v and 7 by applying an exact renormalization 
group method [10]. The basic idea of the method is illustrated in Fig. 2, in the 
case of the b = 2 SG fractal. One starts with considering an arbitrary stage (r) of 
the fractal construction and assigns the weight B' to the piece of the SAW path 
that traverses the r- th stage fractal object. Then, one argues that  B ~ must be 
some function f(B) of the SAW weight B that corresponds to the next smaller 
stages ( r -  1) that comprise the given fractal stage of construction. Furthermore,  
one asserts that f(B), due to the underlying self-similarity, should not depend 
on r. This means that one can find f(B) by considering the fractal generator 
(r = 1). Thus, in the case depicted in Fig. 2, we can write 

B '  = B 2 + B a . ( 1 )  

This is the simplest RG equation, with the nontriviai fixed point B* = ( x / 5 -  
1)/2. The corresponding eigenvalue 2.3820 determined by 

dB'  B* = -d-5- ' (2) 
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Fig .  1. A segment of the b = 9 SG fractal lattice. The curly line represents a part of 
an infinite SAW path (or, a part of a flexible polymer chain). The big white triangles 
(denoted by A through G) can be interpreted as homogeneous pieces (pores), whereas 
the big black downward oriented triangles can be conceived as obstacles. There are ob- 
stacles bigger than those captured within this frame. Theoretically, there are obstacles 
that are 9 r times bigger (where r is a positive integer) than those depicted here, and, in 
fact, the smallest downward oriented triangles may be interpreted as stumbling blocks. 

g ~ B ~ B '  

Fig.  2. Schematic representation of the way one obtains the RG equation (1). One 
should note that here we assume that the SAW walker is not allowed to cross any 
downward oriented unit triangle, and if he crosses an upward oriented unit triangle he 
has to do it in one step, and is never allowed to enter the same triangle again. One 
could stipulate other rules of crossing the upward oriented unit triangles, but it turns 
out that changes of the rules do not change values of the critical exponents. 
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and the general formula 
in b 

: (3 )  
lnA ' 

brings about v = 0.7986, which is definitely larger than the value 3/4 established 
for the two-dimensional Euclidean lattices. In the case of arbitrary b, the function 
f (B)  is also a polynomial of the form 

b(b+l)/2 
B ' :  a,vZ N, (4) 

N=b 

where B is the weight (fugacity) of one SAW step that traverse unit triangle, and 
aN is number of all possible SAWs of N steps that traverse the fractal generator 
(a2 = 1 and a3  - -  1, in the case b = 2). Hence, the central task in evaluation of 
u, for a given b, consists in determining number aN of all possible SAWs of N 
steps that  traverse the fractal generator. Unfortunately, the exact enumeration 
of SAWs can be done only for limited initial sequence of the fraetal family (for 
example, to calculate in this way v for b = 10 it would require about 85 days of 
continuous operating of the IBM 3090 mainframe; this difficulty is common for 
all families of fractals studied). 

In order to find values of u, we have found it suitable [2] to apply the MCRG 
method for SAWs on the fractals with b _> 10. Indeed, due to both the inherent 
self-similarity and the finite ramification of the underlying fractals, this method 
turned out to work much better than in the case of regular lattices. The starting 
point of the method consists in treating B ~, given by (4), as the grand canonical 
parti t ion function that comprise all possible SAWs that enter and exit the fractal 
generator at two fixed apexes. Accordingly, one can write 

i b(b+l)/2 
(N(B)) =-~7 ~ N a N B N ,  (5) 

N = b  

which appears to be the average number of steps made, at fugacity B, by all 
possible SAWs that pass the generator. Combining (4) and (5) we get 

dB I B I 
dB - B ( g ( B ) ) ,  (6) 

and comparing the latter with (3), we obtain the equality A = (N(B*)), whereby 
we find 

In b 
~' - ( 7 )  

ln(N(B*))  

This formula enables us to determine the critical exponent v by calculating 
(N(B*)) via the constant-fugacity MCRG method [11]. We have undertaken this 
approach, and thereby we have calculated y up to b = 81 for the SG and CB 
fractals [2,6], and up to b = 121 for the PF fractals [3]. To this must be added that  
the MCRG approach, when contrasted with the exact RG approach, provided 
results that deviated at most 0.06% from the corresponding exact findings. 

140 



Criticality of Self-Avoiding Walks in Fractal Porous Media 

The MCRG approach could not be pushed much further (beyond b = 100) 
using the present day computers, which is somewhat unfortunate since the limit 
b ~ cc poses an intriguing problem (in view of the fact that the fractal proper- 
ties, like d$ and d~, in this limit approach the relevant Euclidean values). In order 
to asses the asymptotic behaviour of u, Dhar [12] has applied the FSS method 
in the case of the SG family of fractals, and we have applied the same method 
for the PF and the CB families of fractals [3,7]. The essence of the FSS method 
is the interpretation of the function B ~ = f(B) as the corner-spin-corner-spin 
correlation function of the n-vector model (for n = 0), whose known asymptotic 
form (for the large spin distance, in the critical region) provides possibility of 
finding u for large b. By this means, it has been established that in all three cases 
(SG, PF, and CB) u tends to the Euclidean value 3/4 with the same negative 
correction term 3 In Inb/  In b, when b ---* c~. 

At the end of this section, we would like to point out that we have been able 
to calculate the critical exponent 7 by applying all three methods (in respective 
regions of b), that is, the exact RG, MCRG, and FSS method. These calculations 
are more intricate than in the case of u, and, for this reason, we address the 
interested reader to the original references [1,3,5,7,12]. 

3 R e s u l t s ,  C o r o l l a r y ,  a n d  O u t l o o k  

We present our findings for the SAW critical exponent u in a way that  encap- 
sulates in Fig. 3 the results, obtained via different methods, for the three quite 
different families of fractals studies. The first striking feature is that  in all three 
cases u displays qualitatively the same nonmonotonic behaviour as a function 
of the scaling parameter b, whereas the second (and more) striking feature is 
that  u, in its decreasing part, crosses the Euclidean value 3/4 for the same fi- 
nite scaling parameter - -  bh ,.~ 26. To our knowledge, this appears to be the 
first universal element in the critical behaviour of SAWs on fractals. From the 
practical point of view, this means that there is a borderline in the homogeneity 
of fractals (measured by the size of the homogeneous parts they are composed 
of), which are embedded in the two-dimensional Euclidean space. Accordingly, 
for less homogeneous fractals u is larger than the Euclidean value 3//4, while 
for more homogeneous fractals u lies below 3/4. The first possibility, u > 3/4, 
seems to be widely accepted, whereas the second, u < 3/4, is less appreciated, 
although it has been observed in other investigations, both numerically [13] and 
experimentally [14]. 

How can one explain the crossing of the Euclidean value 3/4 for the finite 
b? This is equivalent to the question - -  why does u decrease, with increasing b, 
when we know exactly that,  for small b, it starts with values larger than 3/4? 
The observed decrease of u in the region 2 < b < 100 imply, according to the 
formula (7), that  (N(B*)) increases faster than b. This increase of (N(B*)) can 
be explained in the following way. For values of b close to b = 2, the dominant 
number of SAWs are those that quickly traverse the fractal generators, whereas 
for larger b the walks that contain many rebounds from the generator edges begin 
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Fig. 3. Data for the SAW critical exponent u for the SG family of fractals (triangles), 
PF family (circles), and CB family (squares), plotted as functions of 1/ln b. The error 
bars related to the MCRG data are not depicted in the figure since in all cases they 
lie well within the corresponding symbols. The dashed horizontal line represents the 
Euclidean value 3/4. The thin lines, that connect the results, serve merely as guides 
to the eye, while the dotted and dashed curves represent an extension of the FSS 
prediction for the CB and PF fractals, respectively. Accordingly, the minimum of u 
occurs at b ~ 1750 (in the CB case), and at b ~ 3330 (in the case of the PF fractals). 
The small vertical arrow indicates the position of bh .~ 26. 

to turn up, which makes the walk look like the Hamiltonian walk (the one that 
crosses every available unit triangle). This is illustrated in Fig. 1, in which case 
on can say that the way of traversing the generator B should be characteristic 
of fractals with small b, whereas the way of running through the  generator D 
should be typical of fractals with larger b. In other words, there is a competition 
between the excluded volume interaction and the interaction with the walls (of 
the obstacles, or lattice defects in the case of the PF fractals). They compete 
in such a way that the former tends to stretch out the SAW path, whereas the 
latter works on confining most of the SAW path within the homogeneous regions 
(pores). The same competition causes the minimum of u, which is expected to 
take place before the asymptotic approach to the Euclidean value 3/4 from 
below, in the limit b ~ co (see Fig. 3). The location of the minimum cannot be 
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detected by the present day computers, but  it can be estimated starting with the 
FSS assumptions [7] (or, less accurately, by some phenomenological arguments 
[3,6]). As for the meaning of the minimal value of u that occurs at some brain, we 
may say that  for b < brain the interaction with walls substantially controls the 
SAW end- to -end  distance, while for b > bmi,~ the excluded volume interaction 
begins to preside over. 

In Fig. 4 we present our results for the SAW critical exponent 7 for the three 
families of fractals studied. It turns out that 7 behaves similarly in all three cases, 
that  is, 7 is always larger than the Euclidean value 43/32, and, as a function 
of the fractal scaling factor b, increases monotonically with b. In the case of the 
SG family of fractals 7 -'~ 133/32 when b ~ c~ [12], whereas for the other two 
families (PF and CB) 7 ---+ 103/32 when b ---* oo [3,7] (however, in all three cases, 
the first correction term c ln lnb / lnb  is the same; with c = -321/128,  for the SG 
fractals, and c = -219/128,  for the PF and CB fractals). Furthermore, it turns 
out that  the particular position of the apparently universal borderline (bh ,,~ 26; 
discussed in the foregoing paragraph) is enhanced by the results obtained for 7. 
Indeed, one can notice from Fig. 4 (and, more precisely, upon comparison of the 
tables given in [3,5,7]) that for b > bh (and up to b =- 81) 7 acquires values that  
are, within the error bars, almost the same for the three families of fractals. To 
appreciate the sameness of 7 (in the interval bh < b < 81), one should observe 
that  for very large b (b --~ cxD) the difference in 7 is about ten times greater than 
the quite visible difference that occurs for b < bh. 

In conclusion, we point out that the universality class pertinent to the SAW 
criticality on the two-dimensional Euclidean lattices is not retrieved in the limit 
b ---+ c¢, since 7 does not tend to 43/32 ('although v tends to 3/4) when b tends 
to infinity. In addition, no two fractals with different scaling factors b, belonging 
to a single family of fractals, have the same criticality, as they have different 
values for u, as well as different values for 7. However, the case bh ,~ 26 deserves 
particular attention. Indeed, it springs from our results that the SAW critical 
exponent v crosses the value 3/4 at bh ,~ 26 for the three quite different fami- 
lies offractals, with 7 being almost the same immediately above bh, that  is, for 
bh ,~ b < 81. On these grounds, we may conjecture that bh ~ 26 is a universal 
borderline for fractals in general, which means that one can expect, for instance, 
that  u is smaller than 3/4 if a fractal is composed of homogeneous patches of 
linear size larger than bh. This conjecture should be further scrutinized and used 
to explain other relevant results. To this end, we quote here two recent exam: 
ples available for analysis. First, we note that the experimental finding t, = 0.68 
should not be surprising as it was obtained in a case of a substratum with very 
large homogeneous pieces [14]. Secondly, we remark that our surmise can be 
used to explain certain results related to the controversial problem of SAWs on 
the critical percolation clusters. More particularly, if one accepts that  t, on the 
backbone of the infinite percolation cluster is definitely larger than 3/4 [15,16] 
and looks for possible reasons for such a conclusion, then, with the help of our 
results, it becomes explicable. Namely, the preceding conclusion originated from 
the MC simulations on backbones (see figure 1 of reference [15]) that  appear to 

143 



Sava Milo~evid and Ivan Zivid 

T 

2.20 

2.10 

ZOO 

1.90 

1.80 

1.70 

1.60 

1.50 

1.40 

"x 

i 

~ I f  I I I I ]&  I 
1 1 1 1 1 1 

10070 5040 30 25 20 

ltb 
17 15 12 10 9 

Fig .  4. Data for the SAW critical exponent 7 for the SG family of fractals (triangles), 
PF family (circles), and CB family (squares), plotted as functions of 1lb. The dashed 
horizontal line represents the Euclidean value 43/32, while the thin lines that connect 
the data serve merely as guides to the eye. The error bars related to the MCRG data 
are visible only in the case of the CB fractals, whereas in the SG and PF case the 
error bars lie within the corresponding symbols. The thin vertical line indicates the 
apparently universal borderline bh "~ 26. Finally, one may note that it was necessary 
to interrupt twice the scale of the vertical axes in order to show the FSS predictions 
for the asymptotic values of 7- 
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be finitely ramified fractals with homogeneous parts of the size bB <_ 10, that  is, 
with bB < bh, and which, on the grounds of our results, should have u > 3/4. At 
the end, we expect new evidences that will substantiate our conjecture, as well 
as new specific verifications that will set the scope of its validity. 
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1 I n t r o d u c t i o n  

The purpose of this talk is to describe some recent progress in applying fractal 
concepts to systems of relevance to biology and medicine. We review several bio- 
logical systems characterized by fractal geometry, with a particular focus on the 
long-range power-law correlations found recently in DNA sequences containing 
non~oding material. Furthermore, we discuss the finding that the exponent 
quantifying these long-range correlations ("fractal complexity") is smaller for 
coding than for noncoding sequences. We also discuss the application of fractal 
scaling analysis to the dynamics of heartbeat regulation, and report the recent 
finding that  the normal heart is characterized by long-range "anticorrelations" 
which are absent in the diseased heart. 

In the last decade it was realized that some biological systems have no char- 
acteristic length or time scale, i.e., they have fractal--or,  more generally, self- 
affine--properties [1,2]. However, the fractal properties in different biological 
systems, have quite different nature, origin, and appearance. In some cases, it is 
the geometrical shape of a biological object itself that exhibits obvious fractal 
features, while in other cases the fractal properties are more "hidden" and can 
only be perceived if data are studied as a function of time or mapped onto a graph 
in some special way. After an appropriate mapping, such a graph may resemble 
a mountain landscape, with jagged ridges of all length scales from very small 
bumps to enormous peaks. Mathematically, these landscapes can be quantified 
in terms of fractal concepts such as self-affinity. The main part of the chapter is 
devoted to the study of such hidden fractal properties that have been recently 
discovered in DNA sequences and heartbeat activity. 

2 F r a c t a l  S h a p e s  

In contrast to compact objects, fractal objects have a very large surface area. In 
fact, they are composed almost entirely of "surface." This observation explains 
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why fractals are ubiquitous in biology, where surface phenomena are of crucial 
importance. 

Lungs exemplify this feature (Fig. 1). The surface area of a human lung is as 
large as a tennis court. The mammalian lung is made up of self-similar branches 
with many length scales, which is the defining attribute of a fractal surface. 
The efficiency of the lung is enhanced by this fractal property, since with each 
breath oxygen and carbon dioxide have to be exchanged at the lung surface. The 
structure of the bronchial tree has been quantitatively anMyzed using fractal 
concepts [2,4]. In particular, fractal geometry could explain the power law decay 
of the average diameter of the bronchial tube with the generation number, in 
contrast to the classical model which predicts an exponential decay [6]. 

Not only the geometry of the respiratory tree is described by fractal geometry, 
but also the time-dependent features of inspiration. Specifically, Suki et al. [5] 
studied airway opening in isolated dog lungs. During constant flow inflations, 
they found that  the lung volume changes in discrete jumps (Fig. 1), and that  
the probability distribution function of the relative size x of the jumps, II(x), 
and that  of the time intervals t between these j u m p s , / / ( t ) ,  follow a power law 
over nearly two decades of x and t with exponents of 1.8 and 2.7, respectively. 
To interpret these findings, they developed a branching airway model in which 
airways, labeled ij, are closed with a uniform distribution of opening threshold 
pressures P. When the "airway opening" pressure Pao exceeds Pij of an airway, 
that  airway opens along with one or both of its daughter branches if Pij < Pao 
for the daughters. Thus, the model predicts "avalanches" of airway openings 
with a wide distribution of sizes, and the statistics of the jumps agree with 
those II(x) and II(t) measured experimentally. They concluded that  power law 
distributions, arising from avalanches triggered by threshold phenomena, govern 
the recruitment of terminal airspaces. 

A second example is the arterial system which delivers oxygen and nutrients 
to all the cells of the body. For this purpose blood vessels must have fractal prop- 
erties [7,8]. The diameter distribution of blood vessels ranging from capillaries 
to arteries follows a power-law distribution which is one of the main characteris- 
tics of fractals. Sernetz et al. [9] have studied the branching patterns of arterial 
kidney vessels. They analyzed the mass-radius relation and found that  it can be 
characterized by fractal geometry, with fractal dimensions between 2.0 and 2.5. 
Similarly, the branching of trees and other plants, as well as root systems have 
a fractal nature [10]. Moreover, the size distribution of plant-supported insects 
was found to be related to the fractal distribution of the leaves [11]. 

One of the most remarkable examples of a fractal object is the surface of 
a cauliflower, where every little head is an "almost" exact reduced copy of the 
whole head formed by intersecting Fibonacci spirals of smaller heads, which in 
turn consist of spirals of smaller and smaller heads, up to the fifth order of 
hierarchy (see Fig. 8.0 in [3]). West and Goldberger were first to describe such 
a "Fibonacci fractal" in the human lung [2]. 

Considerable interest in the biological community has also arisen from the 
possibility that neuron shape can be quantified using fractal concepts. For ex- 
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F ig .  1. The dynamic mechanism responsible for filling the lung involves "avalanches" 
or "bursts" of air that  occur in all s izes--instead of an exponential distribution, one 
finds a power law distribution [5]. The underlying cause of this scale-free distribution 
of avalanches is the fact that  every airway in the lung has its own threshold below 
which it is not inflated. Shown here is a diagram of the development of avalanches in 
the airways during airway opening. At first, almost all airways whose threshold value is 
smaller than the external pressure (red) are closed. Then the ~irway opening pressure 
increases until a second threshold is exceeded, and as a result all airways further up the 
tree whose thresholds are smaller become inflated (green). The airway opening pressure 
is successively increased until third, fourth, and fifth thresholds are exceeded (yellow, 
brown, and blue). The last threshold to be exceeded results in filling the airways colored 
violet; we notice that  this last avalanche opens up over 25% of the total  lung volume, 
thereby significantly increasing the total  surface area available for gas exchange. After 
[5] 
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Fig. 2. Photograph of a retinal neuron (nerve cell), the morphology is similar to the 
DLA archetype. After [13] 

ample, Smith et al. [12] studied the fractal features of vertebrate central nervous 
system neurons in culture and found that the fractal dimension is increased as 
the neuron becomes more developed. Caserta et al. [13] showed that  the shapes 
of quasi-two-dimensional retinal neurons can be characterized by a fractal di- 
mension d/.  They found for fully developed neurons in vivo, d] = 1.68 =t= 0.15, 
and suggest that the growth mechanism for neurite outgrowth bears a direct 
analogy with the growth model called diffusion limited aggregation (DLA). The 
branching pattern of retinal vessels in a developed human eye is also similar to 
DLA [8]. The fractal dimension was estimated to be about 1.7, in good agree- 
ment with DLA for the case of two dimensions. For an alternative model for 
retinal growth see [14]. 

The DLA-type model governing viscous fingering may also serve to resolve 
the age-old paradox "Why doesn't the stomach digest itself? [15]. Indeed, the 
concentration of hydrochloric acid in the mammalian stomach after each meal is 
sufficient to digest the stomach itself, yet the gastric epithelium normally remains 
undamaged in this harsh environment. One protective factor is gastric mucus, a 
viscous secretion of specialized cells, which forms a protective layer and acts as 
a diffusion barrier to acid. Bicarbonate ion secreted by the gastric epithelium is 
t rapped in the mucus gel, establishing a gradient from pH 1-2 at the lumen to 
pH 6-7 at the cell surface. The puzzle, then, is how hydrochloric acid, secreted 
at the base of gastric glands by specialized parietal cells, traverses the mucus 
layer to reach the lumen without acidifying the mucus layer. Bhaskar et al. [15] 
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Fig. 3. Viscous fingers reflect the complex interface that develops when one fluid is 
pumped through another of higher viscosity. Shown is the formation of such viscous 
fingers or channels when hydrochloric acid is injected into solutions of gastric mucin. 
These channels may confine the acid and direct it to the lumen, thus protecting the 
gastric mucosa from acidification and ulceration; when the gastric glands contract, acid 
is ejected under high enough pressure to form viscous fingers. After [15] 

resolved this puzzle by experiments that demonstrate the the possibility that  flow 
of hydrochloric acid through mucus involves viscous fingering--the phenomenon 
that  occurs when a fluid of lower viscosity is injected into a more viscous one (see 
Fig. 3). Specifically, Bhaskar et al. demonstrated that injection of hydrochloric 
acid through solutions of pig gastric mucin produces fingering patterns which 
are strongly dependent on pit, mucin concentration, and acid flow rate. Above 
pH 4, discrete fingers are observed, while below pH 4, hydrochloric acid neither 
penetrates the mucin solution nor forms fingers. These in vitro results suggest 
that  hydrochloric acid secreted by the gastric gland can penetrate the mucus gel 
layer (pH 5-7) through n£rrow fingers, whereas hydrochloric acid in the lumen 
(pH 2) is prevented from diffusing back to the epithelium by the high viscosity 
of gastric mucus gel on the luminal side. 

Yet another example of DLA-type growth is bacterial colony spread on the 
surface of agar (gel with nutrient) plates [16] (see Fig. 4). Vicsek et al. [17] 
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Fig.4.  A typical example of DLA-like colony patterns incubated at 35°C for three 
weeks after inoculation on the surface of agar plates containing initially 1 g/£ of peptone 
as nutrient. This pattern has a fractal dimension of d I ~ 1.72. After Matsushita and 
Fujikawa [16] 

studied bacterial colony growth on a strip geometry which results in a self-affine 
surface (see Fig. 13.19 in [18]). They calculated the roughness exponent c~ for 
this surface and found a = 0.78 ± 0.07. The interfacial pattern formation of 
the growth of bacterial colonies was studied systematically by Ben-Jacob et al. 
[19]. They demonstrated that bacterial colonies can develop a pattern similar to 
morphologies in diffusion-limited growth observed in solidification and electro- 
chemical deposition. These include fractal growth, dense-branching growth, com- 
pact growth, dendritic growth and chiral growth. The results indicate that  the 
interplay between the micro level (individual bacterium) and the macro level 
(the colony) play a major role in selecting the observed morphologies similar to 
those found in nonliving systems. 

Another example of fractal interface appears in ecology, in the problem of 
the territory covered by N diffusing particles [20], see Fig. 5. As seen from 
the figure, the territory initially grows with the shape of a disk with a relatively 
smooth surface until it reaches a certain size, at which point the surface becomes 
increasingly rough. This phenomenon may have been observed by Skellam [21] 
who plotted contours delineating the advance of the muskrat population and 
noted that initially the contours were smooth but at later times they became 
rough (see Fig. 1 in [21]). 
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Fig. 5. Snapshots at successive times of the territory covered by N random walkers 
for the case N -- 500 for a sequence of times. Note the roughening of the disc surface 
as time increases. The roughening is characteristic of the experimental findings for the 
diffusive spread of a population [21]. After [20], courtesy of P. Trunfio 

Other biological contexts in which fractal scaling seems to be relevant are 
the relation between brain size and body weight [22], between bone diameter  
and bone length [23], between muscle force and muscle mass [23], and between 
an organism's  size and its rate of producing energy and consuming food [24]. 
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3 L o n g - R a n g e  P o w e r  L a w  C o r r e l a t i o n s  

In recent years long-range power-law correlations have been discovered in a re- 
markably wide variety of systems. Such long-range power-law correlations are 
a physical fact that in turn gives rise to the increasingly appreciated "fractal 
geometry of nature" [1,3,18,25-28]. So if fractals are indeed so widespread, it 
makes sense to anticipate that long-range power-law correlations may be simi- 
larly widespread. Indeed, recognizing the ubiquity of long-range power-law cor- 
relations can help us in our efforts to understand nature, since as soon as we find 
power-law correlations we can quantify them with a critical exponent. Quantifi- 
cation of this kind of scaling behavior for apparently unrelated systems allows 
us to recognize similarities between different systems, leading to underlying uni- 
fications that might otherwise have gone unnoticed. 

Usually correlations decay exponentially, but there is one major exception: 
at the critical point [29], the exponential decay of (la) turns into to a power law 
decay 

~ (1 / , - )  (1)  

Many systems drive themselves spontaneously toward critical points [30,31]. One 
of the simplest models exhibiting such "self-organized criticality" is invasion 
percolation, a generic model that has recently found applicability to describing 
anomalous behavior of rough interfaces. Instead of occupying all sites with ran- 
dom numbers below a pre-set parameter p, in invasion percolation one "grows" 
the incipient infinite cluster right at the percolation threshold by the trick of 
occupying always the perimeter site whose random number is smallest. Thus 
small clusters are certainly not scale-invariant and in fact contain sites with a 
wide distribution of random numbers. As the mass of the cluster increases, the 
cluster becomes closer and closer to being scale invariant or "fractal." Such a 
system is said to drive itself to a "self-organized critical state" [32]. 

In the following sections we will attempt to summarize the key findings of 
some recent work [33-57] suggesting that--under suitable conditions--the se- 
quence of base pairs or "nucleotides" in DNA also displays power-law correla- 
tions. The underlying basis of such power law correlations is not understood at 
present, but this discovery has intriguing implications for molecular evolution 
and DNA structure, as well as potential practical applications for distinguishing 
coding and noncoding regions in long nucleotide chains. 

4 I n f o r m a t i o n  C o d i n g  in  D N A  

The role of genomic DNA sequences in coding for protein structure is well known 
[58,59]. The human genome contains information for approximately 100,000 dif- 
ferent proteins, which define all inheritable features of an individual. The ge- 
nomic sequence is likely the most sophisticated information database created 
by nature through the dynamic process of evolution. Equally remarkable is the 
precise transformation of information (duplication, decoding, etc) that occurs in 
a relatively short time interval. 
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The building blocks for coding this information are called nucleotides. Each 
nueleotide contains a phosphate group, a deoxyribose sugar moiety and either 
a purine or a pyrimidine base. Two purines and two pyrimidines are found in 
DNA. The two purines are adenine (A) and guanine (G); the two pyrimidines 
are cytosine (C) and thymine (T). The nucleotides are linked end to end, by 
chemical bonds from the phosphate group of one nucleotide to the deoxyribose 
sugar group of the adjacent nucleotide, forming a long polymer (polynucleotide) 
chain. The information content is encoded in the sequential order of the bases 
on this chain. Therefore, as far as the information content is concerned, a DNA 
sequence can be most simply represented as a symbolic sequence of four letters: 
A, C, G and T, as shown in Fig. 6. 

i i  , s ~  
, ~ , , ~ ~ , , , 

' ' t t , ' ~ ' ' 

Fig. 6. The base pairing of two "double helix" DNA strands. The two chains of black 
pentagons and circles represent sugar-phosphate backbones of DNA strands linked by 
the hydrogen bonds (dashed lines) between complementary base pairs. 

In the genomes of high eukaryotic organisms only a small portion of the total 
genome length is used for protein coding (as low as 5% in the human genome). 
For example, genes are separated from each other by inlergenic sequences which 
are not used for coding proteins and which (especially in mammalian genomes) 
can'be several times longer than genes. Furthermore, in 1977 it was discovered 
that genes themselves have inclusions which are not used for coding proteins. A 
gene is transcripted to RNA (pre-mRNA) and then some segments of the pre- 
mRNA are "spliced out" during the formation of the smaller mRNA molecule. 
The mRNA then serves as the template for assembling protein. The segments 
of the chromosomal DNA that are spliced out during the formation of a mature 
mRNA are called introns (for intervening sequences). The coding sequences are 
called exons (for expressive sequences). 

The role of introns and intergenomic sequences constituting large portions 
of the genome remains unknown. Furthermore, only a few quantitative methods 
are currently available for analyzing information which is possibly encrypted in 
the noncoding part of the genome. 
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5 C o n v e n t i o n a l  S t a t i s t i c a l  A n a l y s i s  o f  D N A  S e q u e n c e s  

DNA sequences have been analyzed using a variety of models that  can basi- 
cally be considered in two categories. The first types are "local" analyses; they 
take into account the fact that DNA sequences are produced in sequential order; 
therefore, the neighboring nucleotides will affect the next attaching nucleotide. 
This type of analysis, represented by n-step Markov models, can indeed describe 
some observed short-range correlations in DNA sequences. The second cate- 
gory of analyses is more "global" in nature; they concentrate on the presence of 
repeated patterns (such as periodic repeats and interspersed base sequence re- 
peats) that are chiefly found in eukaryotic genomic sequences. A typical example 
of analysis in this category is the Fourier transform, which can identify repeats 
of certain segments of the same length in nucleotide sequences [58]. 

However, DNA sequences are more complicated than these two standard 
types of analysis can describe. Therefore it is crucial to develop new tools for 
analysis with a view toward uncovering the mechanisms used to code other 
types of information. Promising techniques for genome studies may be derived 
from other fields of scientific research, including time-series analysis, statistical 
mechanics, fractal geometry, and even linguistics. 

6 T h e  " D N A  W a l k "  

One interesting question that may be asked by statistical physicists would be 
whether the sequence of the nucleotides A,C,G, and T behaves like a one- 
dimensional "ideal gas", where the fluctuations of density of certain particles 
obey Gaussian law, or if there exist long range correlations in nucleotide content 
(as in the vicinity of a critical point). These result in domains of all size with dif- 
ferent nucleotide concentrations. Such domains of various sizes were known for a 
long time but their origin and statistical properties remain unexplained. A nat- 
ural language to describe heterogeneous DNA structure is long-range correlation 
analysis, borrowed from the theory of critical phenomena [29]. 

6.1 G r a p h i c a l  R e p r e s e n t a t i o n  

In order to study the scale-invariant long-range correlations of a DNA sequence, 
we first introduced a graphical representation of DNA sequences, which we term 
a fractal landscape or DNA walk [33]. For the conventional one-dimensional ran- 
dom walk model [60,61], a walker moves either "up" [u(i) = +1] or "down" 
[u(i) = -1] one unit length for each step i of the walk. For the case of an un- 
correlated walk, the direction of each step is independent of the previous steps. 
For the case of a correlated random walk, the direction of each step depends on 
the history ("memory") of the walker [62-64]. 

One definition of the DNA walk is that the walker steps "up" [u(i) = +1] 
if a pyrimidine (C or T) occurs at position i along the DNA chain, while the 
walker steps "down" [u(i) = -1] if a purine (A or G) occurs at position i (see 
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Fig. 7. Schematic ~ustration showing the definition of the "DNA walk" 

b 

Fig.  8. The DNA walk representations of (a) human fl-cardiac myosin heavy chain 
gene sequence, showing the coding regions as vertical golden bars, (b) the spliced 
together coding regions, and (c) the bacteriophage lambda DNA which contains only 
coding regions. Note the more complex fluctuations for (a) compared with the coding 
sequences (b) and (c). It is found that  for almost all coding sequences studied that  
there appear regions with one strand bias, followed by regions of a different strand 
bias. In this presentation different step heights for purine and pyrimidine are used in 
order to align the end point with the starting point. This procedure is for graphical 
display purposes only (to allow one to visualize the fluctuations more easily) and is not 
used in any analytic calculations. After [33] 
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Fig. 7). The question we asked was whether such a walk displays only short- 
range correlations (as in an n-step Markov chain) or long-range correlations (as 
in critical phenomena and other scale-free "fractal" phenomena). 

There have also been attempts to map DNA sequence onto multi-dimensional 
DNA walks [34,65]. However, recent work [57] indicates that the original purine- 
pyrimidine rule provides the most robust results, probably due to the purine- 
pyrimidine chemical complementarity. 

The DNA walk allows one to visualize directly the fluctuations of the purine- 
pyrimidine content in DNA sequences: Positive slopes on Fig. 8 correspond to 
high concentration of pyrimidines, while negative slopes correspond to high con- 
centration of purines. Visual observation of DNA walks suggests that the coding 
sequences and intron-containing noncoding sequences have quite different land- 
scapes. Figure 8a shows a typical example of a gene that contains a significant 
fraction of base pairs that do not code for amino acids. Figure 8b shows the 
DNA walk for a sequence formed by splicing together the coding regions of the 
DNA sequence of this same gene (i.e., the eDNA). Figure 8c displays the DNA 
walk for a typical sequence with only coding regions. Landscapes for intron- 
containing sequences show very jagged contours which consist of patches of all 
length scales, reminiscent of the disordered state of matter near critical point. 
On the other hand, coding sequences typically consist of a few lengthy regions 
of different strand bias, resembling domains in the system in the ferromagnet 
state. These observations can be tested by rigorous statistical analysis. Figure 8 
naturally motivates a quantification of these fluctuations by calculating the "net 
displacement" of the walker after l steps, which is the sum of the unit steps u(i)  

l for each step i. Thus y( l )  - ~ i = t  u(i) .  

6.2 Corre la t ions  and F luc tua t ions  

An important statistical quantity characterizing any walk [60,61] is the root 
mean square fluctuation F(g) about the average of the displacement; F(~) is 
defined in terms of the difference between the average of the square and the 
square of the average, 

F2(£) - [Ay(i) - Ay(0]2 = [Ay(l)]2 _ Ay-(~) 2, (2) 

of a quantity Ay(0 defined by Ay(e) -- Y(g0 +£)--Y(g0) (see also Chaps. 1 and 5). 
Here the bars indicate an average over all positions Q in the gene. Operationally, 
this is equivalent to (a) using calipers preset for a fixed distance ~, (b) moving 
the beginning point sequentially from to = 1 to go = 2, . . .  and (c) calculating 
the quantity Ay(0 (and its square) for each value of go, and (d) averaging all of 
the calculated quantities to obtain F2(g). 

The mean square fluctuation is related to the auto-correlation function 

c ( e )  - , ,(eo)u(eo + e) - u(eo) (3) 
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through the relation 

F2(e) = E E C ( j -  i). (4) 
i=l j=l 

The calculation of F(£) can distinguish three possible types of behavior. 

1. If  the base pair sequence were random, then C(i) would be zero on average 
[except C(0) = 1], so F(g) ... gl/2 (as expected for a normal random walk). 

2. If there were local correlations extending up to a characteristic range R (such 
as in Markov chains), then C(g) --, exp(-e/R); nonetheless the asymplotic 
(e >> R) behavior F(e) , . ~  e 1/2 would be unchanged from lhe purely random 
c a s e .  

3. If there is no characteristic length (i.e., if the correlation were "infinite- 
range"), then the scaling property of C(O would not be exponential, but 
would most likely to be a power law function, and the fluctuations will also 
be described by a power law 

F(~) ~ ~° (5) 

with a ¢ 1/2. 

Figure 8a shows a typical example of a gene that contains a significant frac- 
tion of base pairs that do not code for amino acids. It is immediately apparent 
that  the DNA walk has an extremely jagged contour which corresponds to long- 
range correlations. Figure 9 shows double logarithmic plots of the mean square 
fluctuation function F( l )  as a function of the linear distance ~ along the DNA 
chain for a typical intron-containing gene. 

The fact that  the data for intron-containing and intergenie (i.e., noncoding) 
sequences are linear on this double logarithmic plot confirms that  F( / )  --~ ~ .  
A least-squares fit produces a straight line with slope a substantially larger 
than the prediction for an uncorrelated walk, a = 1/2, thus providing direct 
experimental evidence for the presence of long-range correlations. 

On the other hand, the dependence of F( / )  for coding sequences is not linear 
on the log-log plot: its slope undergoes a crossover from 0.5 for small ~ to 1 for 
large/ .  However, if a single patch is analyzed separately, the log-log plot of F(~) 
is again a straight line with the slope close to 0.5. This suggests that  within a 
large patch the coding sequence is almost uncorrelated. 

It is known that  functional proteins usually form a single compact three- 
dimensional conformation that corresponds to the global energy minimum in the 
conformational space. Recently, Shakhnovich and Gutin [66] found that  in order 
to have such a minimum it is sufficient that an amino acid sequence forms an 
uncorrelated random sequence. The finding of Peng et al. [33] of the lack of long 
range correlations in the coding nucleotide sequences provides more evidence 
for this hypothesis, since there exist almost one-to-one correspondence between 
amino acid sequences and their nucleotide codes. Furthermore, this finding may 
also indicate that  the lack of long range correlations in the amino acid sequences 
is, in fact, a necessary condition for a functional biologically active protein. 
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Fig. 9. (a) Double logarithmic plots of the mean square fluctuation function F(£) 
as a function of the linear distance g along the DNA chain for the rat embryonic 
skeletal myosin heavy chain gene (o) and its "intron-spliced sequence" (e). (b) The 
corresponding local slopes, Cqoc~l, based on pairs of successive data points of part (a). 
We see that the values of c~ are roughly constant. For this specific gene, the sequence 
with exons removed has an even broader scaling regime than the DNA sequence of the 
entire gene, indicated by the fact that part (a) is linear up to 10,000 nucleotides. After 
[42] 

7 Differences Between Correlation Properties of Coding 
and Noncoding Regions 

The initial report [33] on long-range (scale-invariant) correlations only in noncod- 
ing DNA sequences has generated contradicting responses. Some [34,35, 38,39] 
support our initial finding, while some [35,40,44,50] disagree. However, the con- 
clusions of Refs. [36] and [35,40,44,50] are inconsistent with one another in that  
[35] and [50] doubt the existence of long-range correlations (even in noncoding 
sequences) while [36] and [40,44] conclude that even coding regions display long- 
range correlations (a > 1/2). Prabhu and Claverie [40] claim that  their analysis 
of the putative coding regions of the yeast chromosome III [67] produces a wide 
range of exponent values, some larger than 0.5. The source of these contradicting 
claims may arise from the fact that, in addition to normal statistical fluctuations 
expected for analysis of rather short sequences, coding regions typically consist 
of only a few lengthy regions of alternating strand bias. Hence conventional 
scaling analyses cannot be applied reliably to the entire sequence but only to 
sub-sequences. 

Peng et al. [56] have recently applied the "bridge method" to DNA, and 
have also developed a similar method specifically adapted to handle problems 
associated with non-stationary sequences which they term detrended fluctuation 
analysis (DFA). 

The idea of the DFA method is to compute the dependence of the standard 
error of a linear interpolation of a DNA walk Fd(g) on the size of the interpolation 
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segment g. The method takes into account differences in local nucleotide content 
and may be applied to the entire sequence which has lengthy patches. In contrast  
with the original F(g) function, which has spurious crossovers even for g much 
smaller than a typical patch size, the detrended function Fd(g) shows linear 
behavior on the log-log plot for all length scales up to the characteristic patch 
size, which is of the order of a thousand nucleotides in the coding sequences. For 

close to the characteristic patch size the log-log plot of Fd(g) has an abrupt  
change in its slope. 
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Fig. 10. Analysis of section of Yeast Chromosome III using the sliding box Coding 
Sequence Finder "CSF" algorithm. The value of the long-range correlation exponent 
a is shown as a function of position along the DNA chain. In this figure, the results 
for about 10% of the DNA are shown (from base pair #30,000 to base pair ~60,000). 
Shown as vertical bars are the putative genes and open reading frames; denoted by the 
letter "G" are those genes that have been more firmly identified (March 1993 version of 
GenBank). Note that the local value of c~ displays m i n i m a  where genes are suspected, 
while between the genes c~ displays maxima .  This behavior corresponds to the fact 
that the DNA sequence of genes lacks long-range correlations (a = 0.5 in the idealized 
limit), while the DNA sequence in between genes possesses long-range correlations 
(a ~ 0.6). After [57] 

The  DFA method clearly supports the difference between coding and non- 
coding sequences, showing that  the coding sequences are less correlated than 
noncoding sequences for the length scales less than 1000, which is close to char- 
acteristic patch size in the coding regions. One source of this difference is the 
t andem repeats (sequences such as AAAAAA. . . ) ,  which are quite frequent in 
noncoding sequences and absent in the coding sequences. 

To provide an "unbiased" test of the thesis that  noncoding regions possess but  
coding regions lack long-range correlations, Ossadnik et al. [57] analyzed several 
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artificial uncorrelated and correlated "control sequences" of size l0 s nucleotides 
using the GRAIL neural net algorithm [68]. The GRAIL algorithm identified 
about 60 putative exons in the uncorrelated sequences, but only about 5 putative 
exons in the correlated sequences. 

Using the DFA method, we can measure the local value of the correlation 
exponent a along the sequence (see Fig 10) and find that the local minima of oL 
as a function of a nucleotide position usually correspond to noncoding regions, 
while the local maxima correspond to noncoding regions. Statistical analysis us- 
ing the DFA technique of the nucleotide sequence data for yeast chromosome III 
(315,338 nucleotides) shows that the probability that the observed correspon- 
dence between the positions of minima and coding regions is due to random 
coincidence is less than 0.0014. Thus, this method--which we called the "cod- 
ing sequence finder" (CSF) algorithm--can be used for finding coding regions 
in the newly sequenced DNA, a potentially important application of DNA walk 
analysis. 

8 L o n g - R a n g e  C o r r e l a t i o n s  a n d  E v o l u t i o n  

What is the biological meaning of the finding of long-range correlations in DNA? 
If two nucleotides whose positions differ by 1000 base pairs were uncorrelated, 
then there might be no meaning. However, the finding that they are correlated 
suggests some underlying organizational property. The long-range correlations in 
DNA sequences are of interest because they may be an indirect clue to its three- 
dimensional structure [45,54] or a reflection of certain scale-invariant properties 
of long polymer chains [53,55]. In any case, the statistically meaningful long- 
range "scale-invariant" (see Fig. 11) correlations in noncoding regions and their 
absence in coding regions will need to be accounted for by future explanations 
of global properties in gene organization and evolution. 

Molecular evolutionary relationships are usually inferred from comparison 
of coding sequences, conservation of intron/exon structure of related sequences, 
analysis of nucleotide substitutions, and construction of phylogenetic trees [69]. 
The changes observed are conventionally interpreted with respect to nucleotide 
sequence composition (mutations, deletions, substitutions, alternative splicing, 
transpositions, etc.) rather than overall genomic organizati'on. 

Very recently, Buldyrev et al. [55] sought to assess the utility of DNA cor- 
relation analysis as a complementary method of studying gene evolution. In 
particular, they studied the changes in "fractal complexity" of nucleotide or- 
ganization of a single gene family with evolution. A recent study by Voss [36] 
reported that the correlation exponent derived from Fourier analysis was lowest 
for sequences from organelles, but paradoxically higher for invertebrates than 
vertebrates. However, this analysis must be interpreted with caution since it 
was based on pooled data from different gene families rather than from the 
quantitative examination of any single gene family (see also [70,71]). 

The hypothesis that the fractal complexity of genes from higher animals is 
greater than that of lower animals, using single gene family analysis was tested 
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Fig.  11. The DNA walk representation for the rat embryonic skeletal myosin heavy 
chain gene (a = 0.63). At the top the entire sequence is shown. In the middle the solid 
box shown in the top is magnified. At the bottom the solid box shown in the middle is 
magnified. The statistical self-similarity of these plots is consistent with the existence 
of a scale-free or fractal phenomenon which we call a fractal landscape. Note that one 
must magnify the segment by different factors along the g (horizontal) direction and the 
y (vertical) direction; since F has the same units (dimension) as y, these magnification 
factors Me and M u (along g and y directions respectively) are related to the scaling 
exponent c~ by the simple relation a = log(My)/log(Me) [e.g., from top to middle, 
log(Mu) / log(Me) = log(2.07)/log(3.2) = 0.63] 
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in [55]. This analysis focuses on the genome sequences from the conventional 
(Type II) myosin heavy chain (MHC) family. Such a choice limits potential bias 
that may arise secondary to non-uniform evolutionary pressures and differences 
in nucleotide content between unrelated genes. The MHC gene family was chosen 
because of the availability of completely sequenced genes from a phylogenetically 
diverse group of organisms, and the fact that their relatively long sequences are 
well-suited to statistical analysis. 

The landscape produced by DNA walk analysis reveals that each MHC eDNA 
consists of two roughly equal parts with significant differences in nucleotide con- 
tent (Fig. 12). The first part that codes for the heavy meromyosin or "head" 
of the protein molecule has a slight excess of purines (52% purines and 48% 
pyrimidines); the second part that codes for the light meromyosin or "tail" has 
about 63% purines and 37% pyrimidines. The absolute nucleotide contents are 
not shown in the graphical representation of Fig. 12a because we subtract the 
average slope from the landscape to make relative fluctuations around the av- 
erage more visible. Indeed, one can easily see from Fig. 12a that the relative 
concentration of pyrimidines in the first part ("uphill" region) of the myosin 
eDNA is much higher than in the second ("downhill" region). 

The landscapes of Fig. 12 show that the coding sequences of myosins remain 
practically unchanged with evolution, while the entire gene sequences become 
more heterogeneous and complex. The quantitative measurements of the ex- 
ponent c~ by DFA method confirm this visual observation showing that for all 
coding sequences of MHC family c~ ~ 0.5. In contrast, for entire genes of MHC 
family, the value of c~ monotonically increases from lower eukaryotes to inverte- 
brates and from invertebrates to vertebrates [55]. A stochastic model of random 
deletions and insertions of DNA portions was developed in [55] to explain this 
finding; see also [72-77]. 

Two major theories have been advanced to explain the origin and evolu- 
tion of introns. One suggests that precursor genes consisted entirely of coding 
sequences and introns were inserted later in the course of evolution to help facil- 
itate development of new structures in response to selective pressure, perhaps, 
by means of "exon shuffling" [78]. The alternative theory suggests that precursor 
genes were highly segmented and subsequently organisms not requiring extensive 
adaptation or new development or, perhaps, facing the high energetic costs of 
replicating unnecessary sequences, lost their introns [79,80]. Support for these 
hypotheses has remained largely conjectural; no models have been brought for- 
ward to support either process. The landscape analysis of the MHC gene family 
and the stochastic model [53,55] here are more consistent with the former view. 

9 O t h e r  B i o l o g i c a l  S y s t e m s  w i t h  L o n g - R a n g e  C o r r e l a t i o n s  

The catalog of systems in which power law correlations appear has grown rapidly 
in recent years [32,81,82]; see also Chap. 2. What do we anticipate for other bi- 
ological systems? Generally speaking, when "entropy wins over energy"--i.e., 
randomness dominates the behavior--we find power laws and scale invariance. 
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Fig .  12. The DNA walk representations of 8 cDNA sequences from the MHC family. 
DNA landscapes are plotted so that  the end points have the same vertical displacement 
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The absence of characteristic length (or time) scales may confer important bi- 
ological advantages, related to adaptability of response [2]. Biological systems 
sometimes are described in language that makes one think of a Swiss watch. Such 
mechanistic or "Rube Goldberg" descriptions must in some sense be incomplete, 
since it is only some appropriately-chosen averages that appear to behave in a 
regular fashion. The trajectory of each individual biological molecule is of ne- 
cessity random--albeit correlated. Thus one might hope that recent advances in 
understanding "correlated randomness" [83,62-64] could be relevant to biological 
phenomena. 

9.1 The  H u m a n  Hea r tbea t  

Traditionally, clinicians describe the normal electrical activity of the heart as 
"regular sinus rhythm." However, cardiac interbeat intervals fluctuate in a com- 
plex, apparently erratic manner in healthy subjects even at rest. Analysis of 
heart rate variability has focused primarily on short time oscillations associated 
With breathing (0.15-0.40 Hz) and blood pressure control (--, 0.1 Hz) [80]. Fourier 
analysis of longer heart rate data sets from healthy individuals typically reveals 
a 1/f-like spectrum for frequencies < 0.1 Hz [84-87]. 

Peng et al. [88] recently studied scale-invariant properties of the human heart- 
beat time series, the output of a complicated integrative control system. The 
analysis is based on the digitized electrocardiograms of beat-to-beat heart rate 
fluctuations over very long time intervais (up to 24 h ,~ 105 beats) recorded with 
an ambulatory monitor. The time series obtained by plotting the sequential in- 
tervals between beat n and beat n + 1, denoted by B(n), typically reveals a 
complex type of variability. The mechanism underlying such fluctuations is re- 
lated to competing neuroautonomic inputs. Parasympathetic (vagal) stimulation 
decreases the firing rate of pacemaker cells in the heart's sinus node; sympathetic 
stimulation has the opposite effect. The nonlinear interaction (competition) be- 
tween these two branches of the involuntary nervous system is the postulated 
mechanism for much of the erratic heart rate variability recorded in healthy 
subjects, although non-autonomic factors may also be important. 

To study these dynamics over large time scales, the time series is passed 
through a digital filter that removes fluctuations of frequencies > 0.005 beat -1, 
and plot the result, denoted by BL(n), in Fig. 13. One observes a more complex 
pattern of fluctuations for a representative healthy adult (Fig. 13a) compared 
to the "smoother" pattern of interbeat intervals for a subject with severe heart 
disease (Fig. 13b). These heartbeat time series produce a contour reminiscent of 
the irregular landscapes that have been widely studied in physical systems. 

To quantitatively characterize such a "landscape," Peng et al. introduce a 
mean fluctuation function F(n), defined as 

P ( n )  - I B L ( n '  + n)  -- B L ( n ' ) I ,  (6) 
where the bar denotes an average over all values of n I. Since P(n) measures the 
average difference between two interbeat intervals separated by a time lag n, 
F(n) quantifies the magnitude of the fluctuation over different time scales n. 
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hear tbea t  t ime series shows more complex f luctuations compared to the diseased heart  
rate f luctuat ion pa t te rn  that  is close to random walk ("brown")  noise. (c) Log-log plot 
of F(n) vs n. The circles represent F(n) calculated from da ta  in (a) and the triangles 
from da ta  in (b). The two best-fit fines have slope a = 0.07 and c~ = 0.49 (fit from 
200 to 4000 beats).  The two lines with slopes a = 0 and a = 0.5 correspond to "l/f 
noise" and "brown noise," respectively. We observe that  F(n) saturates  for large n (of 
the order of 5000 beats), because the hear tbeat  interval are subjected to physiological 
constraints  that  cannot  be arbitrarily large or small. The low-pass filter removes all 
Fourier components  for f > f t .  The results shown here correspond to fc = 0.005 
beat  -1,  bu t  similar findings are obtained for other choices of fc _< 0.005. This  cut-off 
frequency fc is selected to remove components  of heart  rate variability associated with 
physiologic respiration or pathologic Cheyne-Stokes breathing as well as oscillations 
associated with baroreflex activation (Mayer waves). After [88] 
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Figure 13c is a log-log plot of F(n) vs n for the data in Figs. 13a and 13b. 
This plot is approximately linear over a broad physiologically-relevant time scale 
(200 - 4000 beats) implying that 

F(n)  ~ n". (7) 

It is found that the scaling exponent a is markedly different for the healthy and 
diseased states: for the healthy heartbeat data, a is close to 0, while a is close 
to 0.5 for the diseased case. Note that a = 0.5 corresponds to a random walk ( a  
Brownian motion),  thus the low-frequency heartbeat fluctuations for a diseased 
state can be interpreted as a stochastic process, in which the heartbeat  intervals 
I(n) - B(n + 1) - B(n) are uncorrelated for n _ 200. 

To investigate these dynamical differences, it is helpful to study further the 
correlation properties of the time series. It is useful to study I(n) because it is the 
appropriate variable for the aforementioned reason. Since I(n) is stationary, one 
can apply standard spectral analysis techniques [3] (see also Chap. 1). Figures 
14a'and 14b show the power spectra St(f), the square of the Fourier transform 
amplitudes for I(n), derived from the same data sets (without filtering) used in 
Fig. 13. The fact that the log-log plot of Ss(f) vs f is linear implies 

1 
s t  ( / )  ~ (s) 

t~J 

The exponent fl is related to a by fl = 2a - 1 [62]. Furthermore, fl can serve as 
an indicator of the presence and type of correlations: 

1. If fl = 0, there is no correlation in the time series I(n) ("white noise"). 
2. If 0 < fl < 1, then I(n) is correlated such that positive values of I are likely 

to be close (in time) to each other, and the same is true for negative I values. 
3. If - 1  < j3 < 0, then I(n) is also correlated; however, the values of I are 

organized such that positive and negative values are more likely to alternate 
in time ("anti-correlation") [62]. 

For the diseased data set, we observe a flat spectrum (j3 ~ 0) in the low 
frequency region (Fig. 14b) confirming that I(n) are not correlated over long 
time scales (low frequencies). Therefore, I(n),  the first derivative of B(n), can 
be interpreted as being analogous to the velocity of a random walker, which 
is uneorrelated on long time scales, while B(n)--eorresponding to the position 
of the random walker--are correlated. However, this correlation is of a trivial 
nature since it is simply due to the summation of uncorrelated random variables. 

In contrast, for the data set from the healthy subject (Fig. 14a), we obtain 
fl ~ - 1 ,  indicating nonlrivial long-range correlations in B(n) - - these  correla- 
tions are not the consequence of summation over random variables or artifacts 
of non-stationarity. Furthermore, the "anti-correlation" properties of I(n) indi- 
cated by the negative fl value are consistent with a nonlinear feedback system 
that  "kicks" the heart rate away from extremes. This tendency, however, does 
not only operate on a beat-to-beat basis (local effect) but on a wide range of time 
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of a pathologic, characteristic time scale is associated with a spectral peak (arrow) at 
about 10 -2 beat -1 (corresponding to Cheyne-Stokes respiration). After [88] 

scales. To our knowledge, this is the first explicit description of long-range anti- 
correlations in a fundamental  biological variable, namely the interbeat  interval 
increments. 

Furthermore, the histogram for the hear tbeat  intervals increments is found 
to be well-described by a L6vy stable distribution. For a group of subjects with 
severe heart disease, it is found that  the distribution is unchanged, but  the long- 
range correlations vanish. Therefore, the different scaling behavior in health and 
disease must relate to the underlying dynamics of the heartbeat .  Applications 
of this analysis may lead to new diagnostics for patients at high risk of cardiac 
disease and sudden death. 

9.2 P h y s i o l o g i c a l  I m p l i c a t i o n s  

The finding of nontrivial long-range correlations in healthy heart  rate dynamics 
is consistent with the observation of long-range correlations in other biological 
systems that  do not have a characteristic scale of time or length. Such behavior  
may  be adaptive for at least two reasons. (i) The long-range correlations serve 
as an organizing principle for highly complex, nonlinear processes that  generate 
fluctuations on a wide range of t ime scales. (ii) The lack of a characteristic scale 
helps prevent excessive mode-locking that  would restrict the functional respon- 
siveness of the organism. Support for these related conjectures is provided by 
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observations from severe diseased states such as heart failure where the break- 
down of long-range correlations is often accompanied by the emergence of a 
dominant frequency mode (e.g., the Cheyne-Stokes frequency). Analogous tran- 
sitions to highly periodic regimes have been observed in a wide range of other 
disease states including certain malignancies, sudden cardiac death, epilepsy and 
fetal distress syndromes. 

The complete breakdown of normal long-range correlations in any physio- 
logical system could theoretically lead to three possible diseased states: (i) a 
random walk (brown noise), (ii) highly periodic behavior, or (iii) completely un- 
correlated behavior (white noise). Cases (i) and (ii) both indicate only "trivial" 
long-range correlations of the types observed in severe heart failure. Case (iii) 
may correspond to certain cardiac arrhythmias such as fibrillation. More subtle 
or intermittent degradation of long-range correlation properties may provide an 
early warning of incipient pathology. Finally, we note that the long-range correla- 
tions present in the healthy heartbeat indicate that the neuroautonomic control 
mechanism actually drives the system away from a single steady state. There- 
fore, the classical theory of homeostasis, according to which stable physiological 
processes seek to maintain "constancy" [89], should be extended to account for 
this dynamical, far from equilibrium, behavior. 

9.3 Human Writings 

Long-range correlations have been found recently in human writings [81]. A 
novd, a piece of music or a computer program can be regarded as a one- 
dimensional string of symbols. These strings can be mapped to a one-dimensional 
random walk model similar to the DNA walk (Sect. 6) allowing calculation of 
the correlation exponent a using (4a). Values of a between 0.6 and 0.9 were 
found for various texts. 

An interesting fractal feature of languages was found in 1949 by Zipf [90]. He 
observed that the frequency of words as a function of the word order decays as 
a power law (with a power close to -1) for more than four orders of magnitude. 
A theory for this empirical finding, based on assumptions of coding words in the 
brain, was given by Mandelbrot [1,91]. A related interesting statistical measure 
of short-range correlations in languages and in general series sequences is the 
entropy and redundancy defined by Shannon [92]. 

9.4 Dynamics  of  M e m b r a n e  Channel Openings 

Ions, such as potassium and sodium, cannot cross the lipid cell membrane. They 
can, however, enter or exit the cell through ion channel proteins that are dis- 
tributed on the cell membrane. These proteins spontaneously fluctuate between 
open or closed states. Liebovitch [93] found that the histograms of the open and 
closed duration times of some channels are self-similar and behave as power laws. 
This approach may provide new models for the ion channel gating mechanisms. 
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Fig .  16. Musical mapping of two heartbeat  times series, derived from normal (top) and 
pathologic (bottom) data  sets. The original heart beat  time series were obtained from 
24 houi recordings consisting of about l0 s heartbeats.  The hear tbeat  t ime series were 
then low-pass filtered to remove fluctuations > 0.05 ( b e a t - l ) ,  roughly equivalent to 
averaging every 200 beats. The pat tern of fluctuations in the normal is more complex 
than that  of the "music" generated from the abnormal da ta  sets. Musical compositions 
based on these times series are available on cassette by request along with the "scores"; 
contact Zachary D. Goldberger (e-maih ary "at" astro.bih.harvard.edu).  There is a 
nominal charge for copying and mailing. After [97], courtesy of Z.D. Goldberger 
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9.5 Frac ta l  Mus ic  and the  H e a r t b e a t  

Fourier analysis of instantaneous fluctuations in amplitude as well as inter-note 
intervals for certain classical music pieces (e.g., Bach's First Brandenburg Con- 
certo) reveals a 1 / f  distribution over a broad frequency range [94-96]. Voss and 
Clarke [95] used an algorithm for generating 1/f-noise to "compose" music. 

Based on the observation of different scaling patterns for healthy and patho- 
logic heartbeat time series [88], it was very recently postulated [97] that (i) actual 
biological rhythms such as the heartbeat might serve as a more natural template 
for musical compositions than artificially-generated noises, and (ii) audibly ap- 
preciable differences between the note series of healthy and diseased hearts could 
potentially serve as the basis for a clinically useful diagnostic test. Accordingly, 
a computer program was devised to map heart rate fluctuations onto intervals of 
the diatonic musical scale [97]. As anticipated, the normal (1/f-like) heartbeat 
obtained from the low pass filtered time series reported in [88] generated a more 
variable (complex) type of music than that generated by the abnormal times 
series (Fig. 15). 

The "musicality" of these transcriptions is intriguing and supports specula- 
tions about the brain's possible role as a translator/manipulator of biological 
1/f-like noise into aesthetically pleasing art works. Current investigations are 
aimed at extending these preliminary observations by (i) comparing the "mu- 
sicality" of note sequences generated by natural (biological) vs. artificial (com- 
puter simulated) correlated and uncorrelated noises, and (ii) using heartbeat 
time series as the template for simultaneously generating fluctuations in musical 
rhythm and intensity, not only pitch. 

9.6 Fractal  Approach  to Biological  Evo lut ion  

Fossil data suggest that evolution of biological species takes place as intermit- 
tent bursts of activity, separated by relatively long periods of quiescence [98]. 
Recently Bak and Sneppen [99] suggested that these spontaneous catastrophic 
extinctions may be related to the power law distribution of avalanches of growth 
observed in a model of self-organized criticality (SOC). Such SOC models are 
reminiscent of recent surface growth models based on the concept of directed 
invasion percolation [100]. 
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1 A b s t r a c t  

A survey of recent simulations and analytical work on collective diffusion of 
lattice gases in lattices with site-energy disorder is given. In one-dimensional 
disordered lattices, exact results have been obtained in the limit of small and 
large particle concentrations. Simulation results at intermediate concentrations 
show that the time-dependent site-occupancy correlations are not yet satisfacto- 
rily understood. In higher-dimensional disordered lattices, an effective-medium 
theory, which uses mean-field transition rates, gives an improvement over the 
phenomenological description and qualitative agreement with the simulations. 
The main effects derive from saturation of deep trapping sites. One conspicuous 
example is the existence of a coefficient of collective diffusion in a situation where 
no single-particle diffusion coefficient exists. 

2 I n t r o d u c t i o n  

This paper is concerned with the coefficient of collective diffusion of lattice gases 
in lattices with site-energy disorder. A survey of recent simulations and of analyt- 
ical derivations of this transport coefficient in lattices of different dimensions will 
be given. The understanding of transport processes in lattice gases in disordered 
lattices is important  for several reasons. There are various disordered materials 
where the diffusivity or mobility of many particles, that cannot simultaneously 
occupy the same sites, is of interest. Examples are hydrogen in disordered al- 
loys [1] and metglasses [2], and particles on imperfect or disordered surfaces [3]. 
From a more fundamental  point of view, interesting problems arise from the cor- 
relations between the occupancies of different sites in nonequilibrium situations, 
which determine the transport properties in disordered lattices. We will address 
this problem, which is not yet solved even for the one-dimensional disordered 
chain. 

In lattice gases one considers two quite different diffusion coefficients, namely 
the coefficient of collective or chemical diffusion, and the coefficient of tagged- 
particle diffusion. The coefficient of collective diffusion is defined through Fick's 
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law, i. e. , it describes the decay of density disturbances towards the equilibrium 
density, on a mesoscopic scale. The tagged-particle diffusion coefficient follows 
from the asymptotic mean-square displacement of individual particles. Diffu- 
sion of tagged particles is theoretically more complicated to understand than 
collective diffusion, due to additional backward correlations that  appear in the 
random walk of individual particles. Hence, we will concentrate in this paper 
on the coefficient of collective diffusion, where the identity of the particles is 
disregarded. 

3 M o d e l ;  M e a n - F i e l d  T r a n s i t i o n  R a t e s  

The model that  we consider is the usual lattice-gas model where particles occupy 
the sites of d-dimensional hypercubic lattices (d = 1,2,3,..). The overall concen- 
tration c of the particles is defined as the quotient of the number of particles and 
the number of sites. Multiple occupancy of the sites is excluded, otherwise the 
particles have no further interactions. Disorder is introduced by assigning ran- 
dom, quenched transition rates Fij where l"ij is the transition rate of a particle 
from site i to a neighbor site j ,  if the site j is empty. 

Collective diffusion is completely described by the probability P(1, t) of find- 
ing a particle at lattice site l at time t, with appropriate initial conditions. The 
quantity P(l,  t) obeys a master equation; for the following argument it suffices 
to consider only that part of the master equation for P(1, t) that  involves two 
neighboring sit es 1 and 2. We designate With 0i2 / Ot t he time derivative of P (1, t ), 
which results from transitions between 1 and 2. It is given by 

Ol~ P(1, t) = F~][P(2, t) - P(2, 1, t)] - F12[P(1, t) - P(1, 2, t)] . 
Ot 

(i) 

P(1,2,t) is the joint probability of finding a particle at site 1 and another particle 
at site 2 at time t. The terms in the square brackets represent the probabilities 
that  a particle is present at site 2 and no particle at site 1, and a particle at site 
1 and no particle at site 2, respectively. Only under these conditions transitions 
from 2 to 1, or from 1 to 2, respectively, are allowed. If the transition rates 
between the sites 1 and 2 are symmetric, F12 =/"21, the joint probabilities cancel 
each other in (1) and we have 

~--~lt~ P(1 , t  ) = £21[P(2,t) - P(1,t)] . (2) 

I. e. , the problem has been reduced to a single-particle problem [4]. The con- 
sequences are that  the coefficient of collective diffusion is given for the ideal 
hypercubic lattices with a uniform transition rate F by Dcoll = F (with the 
lattice constant a = 1), and that Dcou is given in the random-barrier model and 
in the model with randomly blocked sites by the diffusion coefficient Ds.p. of 
single, independent particles [5]. Hence no concentration dependence of Dcoll is 
present in these cases. 
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The simplest nontrivial case where collective diffusion is influenced by the 
time-dependent joint probabilities and hence Dcotl ~ Ds.p. is then the case of 
site-energy disorder. This model is abstractly defined by specifying disordered 
rates Fi which originate from the sites i, and are independent of the terminal 
sites. Concretely, one may consider lattices where the sites have random energies 
Ei < 0, which are selected from a common distribution v(E).  The transition rates 
then follow from an Arrhenius law, 

Fi = Fo exp(Ei/kBT) El < 0 . (3) 

The distribution v(E) of the random energies may be Gaussian, exponential, 
or of other forms. One particularly simple case is the dichotomic distribution, 
where two types of sites occur, namely "free" sites with probability 1 - ct, with 
energy Ei = 0 and transition rate F0, and "trap" sites with probability ct, energy 
Ei = Et, and transition rate F < = Fo exp(Et/kBT).  

The single-particle diffusion coefficient of the random trap model is exactly 
known in all dimensions [6], 

D,.p. = { F - l }  -1 (4) 

where the braces indicate an average over the distribution of the random tran- 
sition rates p(_r'). Of course, the application of (4) requires the existence of the 
first inverse moment of p(F). The general formula will be exemplified for the 
dichotomic random-trap model, 

ct 1 - ct~ -1 
D, .p .=  ~--~-+ Fo ] (5) 

Again, this formula holds for arbitrary dimensions. 
It is evident that  the joint probabilities do not cancel each other in the part of 

the master equation (1) when the transition rate/721 is replaced by F2 and F12 by 
/71, respectively, as appropriate for the random-trap model. The formulation of a 
master equation for the joint probability P(1, 2, t), etc. , leads to an intractable 
hierarchy of equations. The simplest way to break this hierarchy is to factorize 
the two-particle joint probability. Since we are interested in the behavior of 
small deviations from equilibrium we also linearize the product. Thus we make 
the ansatz 

P(1, 2, t) ~ P(1)P(2) + P(1)6P(2, t) + P(2)6P(1, t) (6) 

where, e. g. , 6P(1, t) = P(1, t) - P(1) is the deviation from the equilibrium 
occupation probability. We will refer to this ansatz as the "mean-field approxi- 
mation".  

The factorization is exact for the equilibrium state (but not for stationary 
states) and the stationary solution of the master equation is obtained when the 
condition of detailed balance holds, 

FIP(1)[1 - P(2)] = F2P(2)[1 - P(1)] . (7) 
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Insertion of the approximation (6) into the part of the master equation (1) leads 
to a master equation with mean-field transition rates, 

where 

~t  SP(1, t) = FMF sp(2, t) - FMF sp(1, t) , (8) 

F M F  = F~ - ( / "2 - F O P ( 1  ) . ( 9 )  

The same reasoning can be made for any pair of adjacent sites i, j .  
The mean-field transition rates can be brought into another form by applying 

the condition of detailed balance, 

F ~  r = F1 P ! I !  . (10) 
P(2) 

Different but related mean-field transition rates were introduced by Gartner  and 
Pitis [7], they are symmetric. 

It is instructive to consider the mean-field transition rates in the limiting 
c a s e s  

= { c o 
(11) 

/'1 c ---~ 1 . 

The first case corresponds to the trivial single-particle limit, while the second 
case represents the diffusion of isolated vacancies, as we will discuss explicitly 
for the linear chain. 

4 L i n e a r  C h a i n s  

4.1 Limit of  Large Concentrat ions  

We will first consider lattice gases on disordered linear chains in the limit of 
large concentrations, c --+ 1. To this end we consider the dichotomic chain in 
the almost filled situation, as sketched in Fig. l(a).  The single vacancy sees a 
potential as indicated in Fig. l(b).  In this potential the transition rates into the 
sites are specified, i. e . / ' i - l , i  = Fi+l,i, in accordance with the result of the mean- 
field approximation (11). We note that this approximation is exact in this limit, 
since it correctly describes the physical process. The case when the transition 
rates into the sites are specified has been called "in-site randomness" by van den 
Broeck [8]. 

It remains to derive the diffusion coefficient for the case of in-site randomness. 
This can be conveniently done by using an exact formula for the mean first- 
passage time of a particle on a finite disordered linear chain of length L with the 
reflecting starting site 0 and the absorbing terminal site L [9]. The result is 

D = {F}- l{_r ' - l}  -2 (12) 
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As before, the braces designate the average over the distribution of the transition 
rates. As an example, for the dichotomic random-trap model 

[ct l-et] 
D = [ c t F  < + ( 1 - c t ) F o ]  -1 ~ +  F0 J (13) 

This formula gives the diffusion coefficient of single vacancies in lattice gases on 
disordered dichotomic linear chains with a concentration ct of trap sites, in the 
limit c ~ 1. 

Figure 2 demonstrats that  the numerical simulations of the diffusion coeffi- 
cient agree completely with the formula given above. Hence the correctness of 
(13) has been verified. The curve shows a shallow minimum around the value 
ct ~ 2/3. Indeed, (13) has a minimum as a function of ct at ct = 2/3 for F < << F,  
and in this limit 

D - 27 (F<)  2 (14) 
4 F0 

This result may be compared with the result for the ordered chain with ct = 2/3 
where two trap sites are followed by a free site. The potential felt by the vacancy 
is a periodic succesion of the double mountain that is recognized in Fig. l(b),  and 
the diffusion coefficient of the periodic arrangement is, in the limit F < << F0, 

D = 9 ( r<)~  (15) 
F0 

At first glance it may seem paradoxical that a single vacancy diffuses more slowly 
in a lattice gas on a disordered lattice with a concentration of about 2/3 of deep 
sites, compared to the situation with only deep sites where Dco]l = F <. The 
discussion given above demonstrates, by transcription of the problem to the 
effective mean-field transition rates, that this is indeed the case. 

As already said, the diffusion coefficient of single vacancies in the case of 
c --* 1, represents the coefficient of collective diffusion of lattice gases, in this 
limit, on disordered chains. 

4.2  A r b i t r a r y  C o n c e n t r a t i o n s  

Using the mean-field transition rates (10) the coefficient of collective diffusion 
can be derived for arbitrary concentrations of the lattice gas by using the exact 
expression for the mean first-passage time [9]. The result is 

D = { P 2 F } - I { ( P F ) - I } - 2  . (16) 

It is easily examined that the limiting cases of small and large particle concen- 
trations follow correctly. The limiting case (12) of c ~ 1 is obtained directly by 
replacing P by 1. The low-concentration limit (4) is obtained by observing that  
in this limit P ,-~/--1, as is evident from the condition of detailed balance. 

A completely equivalent result to (16) was obtained by Gartner  and Pitis [7], 
although their formula looks rather different. These authors also calculated the 
first correction to the mean-field approximation. 
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Fig. 1. (a) Dichotomic chain with only a single vacancy (open circle) left. All other 
lattice sites are occupied by particles (full circles). Arrows indicate remaining transition 
possibilities of the particles. (b) Potential as seen from the single vacancy of (a). Arrows 
show possibile transitions of the vacancy. 

Numerical simulations of the collective diffusion were done by preparing the 
system with a uniform density plus a cosine profile, 

c(x) = c + 5c cos(kx) (17) 

where k = 2~r/A with A the wavelength of the density profile and x is a discrete 
coordinate along the chain. The initial amplitude 5c was chosen small compared 
to c and the decay with time was observed during the dynamics of the particles, 

5c( t )  = 5 c e x p ( - D c o H k 2 t )  . ( i s )  

We used the vectorized computer code that was described in [10]. Figures 3 and 
4 give a comparison of the simulation results with the mean-field approximation 
and the first correction to it. The observed concentration dependence of the 
diffusion coefficient is smoother than predicted b y  theory. In the limiting cases 
c --* 0 and c --~ 1 theory and simulations agree, the deviations of some data  
points for ct = 0.2 and c --~ 1 are due to difficulties in determining D¢ol] in this 
region. 

The discrepancies between theory and simulations are most pronounced around 
c ~ ct. The first correction to the mean-field theory improves the situation, but  
there remains a considerable difference, It is fitting to point out that  the ordered 
situation for ct = 1/2 and arbitrary concentrations c was completely solved in 
an early paper by Richards [11]. Also in this case the largest difference between 
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Fig. 2. Diffusion coefficient of single vacancies on a hnear chain with "in-site random- 
ness" as a function of the trap concentration ct. The full curve represents the theoretical 
expression (13) with the ratio of transition rates F</Fo = 0.1 and the symbols (o) are 
results of numerical simulations. 

the exact result and the mean-field result occurs for c = c t .  We conclude tha t  
the proper t rea tment  of the t ime-dependent particle correlations is not yet un- 
derstood in the disordered situation. 

5 Collective Diffusion in Higher-Dimensional Disordered 
Lattices 

We now direct our at tention to the coefficient of collective diffusion of lattice-gas 
particles in lattices with random site-energies in two and three dimensions. The  
diffusion of many  particles in lattices with trapping sites that  can be sa turated 
by particles was of continued interest to metal  physicists in the past.  We men- 
tion the early work of Oriani [12]; see [13] for further references. Kirchheim et 
al. [14] have introduced the model of a Gaussian distribution of site energies for 
the interpretat ion of solubility and diffusivity data  of hydrogen in metglasses. 
Diffusion in the presence of trapping sites was also of interest to surface physi- 
cists. Several approximate  derivations of the diffusion coefficient were given in 
the literature. They are based on the decomposition of the coefficient of collec- 
tive diffusion in the product  of a kinetic factor and a thermodynamic  factor, 
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Fig.  3. Coefficient of collective diffusion as a function of the concentration of the lat- 
tice gas, for the dichotomic random-trap model with the trap concentration ct = 0.2. 
The different symbols represent simulation results with the ratios F</Fo of the tran- 
sition rates: (×) 0.5; (A) 0.3; (o) 0.1; (+) 0.05; (n) 0.01. The full curves represent 
the mean-field result and the dashed curves include the first correction obtained by 
Gartner and Pitis [7]. 

Dco]l = BcOo-~. While the the rmodynamic  factor  c ~  can be calculated exact ly 
f rom equil ibrium statistical mechanics for the model  of  r a n d o m  site-energies, as- 
sumpt ions  are necessary for the kinetic factor  B. We cite an explicit expression 
for the coefficient of collective diffusion which represents the special ization of  a 
recent formula  of Salomons [15] to the dichotomic model,  

D (1  Z c)[(1--c_ Oq -I- ctcuF</Fo] 
Dcoll = 0(1 _ ct)cl(1 - Cl)~CtC--~-- -c2)  " (19) 

Do is the diffusion coefficient in the ideal lattice, cl and c2 are the concentra-  
t ions of  the lattice-gas particles on the free and t rap sites, respectively. These 
concentrat ions are explicitly given by 

1 [ 1 
Cl = 2(1 - Ct) e -- ct e -P  Et -- 1 

i 2C-~-Ct--~CCt ( 1 )2] 
-~- (C- Ct) 2 ~- e - ~ t  -- 1 + , , e - Z - - -  1 (20) 
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Fig. 4. Coefficient of collective diffusion as a function of the concentration of the lattice 
gas, for the dichotomic random-trap model with the trap concentration ct = 0.7. The 
different symbols and curves have the same meaning as in Fig. 3. 

C2 -- C -  CI(1 -- Ct) (21) 
et 

We will refer to the above expression (19) as the phenomenological theory. A 
comparison of the formula (19) with the simulation data will be made in con- 
junct ion with the results of the effective-medium theory. 

I t  is impor tan t  to examine the limiting cases for DcoH. First, in the limit of 
very smM1 particle concentration c + 0 one obtains the correct single-particle 

T~phen, 0) Ds.p.. In the limit of c ---* 1 and F < << F0 one diffusivity of (5), L'coll [C + = 
finds 

DPhen / 
coU t e "-+ 1 , / '<  << Fo) = D0(1 - at) . (22) 

Comparison of this result with known results from percolation theory shows 
that  it cannot be correct, except in infinite dimensions. If  very deep t raps are 
present and if they are saturated by filling nearly all sites of the system, the 
t rapping sites act as more or less permanent  blocking sites to the diffusion of 
the remaining particles. 

The diffusive behavior of the particles on the free sites now depends crucially 
on the concentration of the blocking sites. If  their concentration is so small tha t  
the lattice of free sites percolates, diffusion of the particles on the free sites 
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is possible. Further, the transition rates between the free sites are symmetric, 
hence the coefficient of collective diffusion coincides with the coefficient of single- 
particle diffusion, as was discussed in Sect. 3. The coefficient of single-particle 
diffusion in lattices with smaller concentrations of randomly blocked sites was 
considered by Tahir-Kheli [16] and Ernst et al. [17]. They found 

Ct 
D = D 0 ( 1 -  ~- + . . . )  (23) 

where f is the correlation factor for tagged-particle diffusion in ideal lattices, in 
the limit c ~ 1. For instance, in the simple-cubic lattice f = 0.653 . . . .  Numerical 
investigations [18] showed that (23) is a good approximation for ct not too close 
to 1 -Pc  where Pc is the percolation threshold for free sites. It was Mso verified in 
[18] that  the single-particle diffusion coefficient (23) coincides with the collective 
diffusivity. Clearly (23) is incompatible with (22), except for f = 1, which is 
the correct correlation factor in infinite dimensions. Our numerical simulations, 
which are given in the next section, agree with (23), not with (22). Hence they 
confirm the physically reasonable picture of diffusion in the presence of blocked 
sites, for ct < 1 -Pc .  

No exact expression can be given for the opposite case, ct > 1 - p c .  Diffusion 
ceases to exist for the completely immobile situation, that  is for F</Fo ---* O. 
For F</Fo << 1 diffusion is only possible through the dynamical processes that  
particles may escape from trap sites, i. e. , one expects Dcoll "" F <. This is in 
contradiction to (22) where Dcoll "" Do = F0. 

6 E f f e c t i v e - M e d i u m  T h e o r y  

To improve the phenomenological theory, which was discussed in the preceding 
section, we have developed an effective-medium theory for collective diffusion 
in lattice gases in disordered lattices in arbitrary dimensions. A detailed de- 
scription will be given elsewhere [19], hence only a brief characterization of the 
approximation and of some results will be given. 

The effective-medium theory for the collective diffusion is based on previous 
work on single-particle diffusion in disordered lattices with random distribu- 
tions of the bonds. That work can be regarded as an extension of the work of 
Kirkpatrick on the conductivity of disordered lattices [20] to time-dependent 
hopping problems, see the review [6]. In the single-bond approximation and in 
the static limit, the self-consistency condition for the effective-medium transition 
rate I"EM w of the random-barrier model reads 

F E M T  --  ]"sym 
{ (d _: 1--~EMT---~ ~,ym } = 0 (24) 

where d is the dimensionality of the lattice. The average in (24) is over the 
distribution of the transition rates Fsym. The diffusion coefficient is then given 
by D = INEM T. The application of the effective-medium theory to lattice gases 
requires first the reduction to a single-particle problem. This is accomplished by 
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the introduction of mean-field transition rates. In addition, the single-particle 
transition rates have to be symmetric, in order to apply the single-bond for- 
mulation of the random-barrier model. The mean-field transition rates which 
were introduced in Sect. 3 are not symmetric. Symmetric mean-field transition 
rates were introduced in Ref. [7], which will be used for the further derivations. 
Explicitly we use 

Fsy m FiR(i)[1 - P(j)] (25) 

The symmetry of these rates is obvious from the condition of detailed balance, 
(7), and the factor in the denominator has been added for proper normalization. 

For d 1 /"EMT - 1 - 1 = = {Fsym} is obtained. This corresponds to the result of 
Ref. [7] for linear chains, which is equivalent to the result (16) given in Sect. 
4. In d = 2 and 3 the self-consistency condition can be solved explicitly for 
the dichotomic distribution. For other distributions such as the Gaussian one a 
numerical evaluation of (24) is necessary, which poses no problem. 

Figures 5 and 6 show the results of the effective-medium approximation for 
the dichotomic random-trap model for two trap concentrations, together with 
the simulation results and the phenomenological expression (19). We first discuss 
the case of small trap concentration ct. For small particle concentrations c < ct 
both expressions give a description of the simulation data, with better agreement 
of the effective-medium theory. For small ct there is a steep rise of the diffusion 
coefficient with particle concentration. This is of experimental relevance: the 
result confirms the intuitive picture that traps can be saturated by particles, thus 
allowing the remaining particles to perform diffusion processes more effectively. 
For larger particle concentration c > ct the effective-medium theory and the 
phenomenological theory disagree with the simulation data. On the other hand, 
the simulation data  for F < <</10 extrapolate nicely to the value that is predicted 
by (23). 

For the large trap concentration ct -- 0.75 the effective-medium theory gives a 
better description of the data than the phenomenological expression for c < ct. 
For c > ct the phenomenological expression is in complete disagreement with 
the simulation data, as expected from the above discussion. Also the effective- 
medium theory does not reproduce the numerical data, but it gives at least a 
rough qualitative description. 

Finally we point out that  the phenomenological expression (19) is obtained 
as the d ---+ oo limit of the effective-medium theory, as can be derived from 
(24) . We thus observe that  the phenomenological derivations can be justified in 
the limit of infinite dimensions of the underlying lattices. The difficulty of the 
phenomenological theories resides in the kinetic factor. Concretely, particles in 
deep traps create backward correlation in the diffusion steps of the other particles 
which are difficult to correctly take into account. In the limit of high dimensions, 
the mobile particles have so many possibilities for jumps that  these backward 
correlations become irrelevant. Hence it is plausible that  the phenomenological 
expression is regained in this limit. 
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Fig. 5. Coefficient of collective diffusion as a function of the concentration of the lattice 
gas, for the dichotomic random-trap model with the trap concentration ct = 0.2. The 
different symbols represent simulation results with the ratios of the transition rates 
F</Fo: (o) 0.1; (+) 0.01; (D) 0.001. The star indicates the limit (23). The full curves 
represent the effective-medium approximation and the dashed curves the phenomeno- 
logical expression (19). 

7 Col lec t ive  Dif fus ion in the  A b s e n c e  of a Coeff ic ient  of 
S ing le -Part i c l e  Diffusion 

In this section we will show that  collective diffusion is possible even in the case 
where no diffusion coefficient of single, independent particles exists. The phe- 
nomenon to be discussed is caused by the saturat ion of those sites that  are re- 
sponsible for the vanishing of the single-particle diffusion coefficient, by a finite 
concentration of particles. 

We consider an exponential distribution of site energies, 

r,(E) = -o'1 e x p ( E )  E _< 0 (26) 

where cr characterizes the width of the distribution. When combined with the 
Arrhenius law (3) for the transition rates of particles from a site with energy E,  
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Fig. 6. Coefficient of collective diffusion as a function of the concentration of the lattice 
gas, for the dichotoInic random-trap model with the trap concentration ct = 0.75. The 
different symbols and curves have the same meaning as in Fig. 5. 

we have the following distribution of transition rates in our model, 

p( r )  = (27) 

with the parameter a = kBT/cr. The diffusion coefficient of a single, independent 
particle follows from (4), 

/(Ol 
Ds -1. = dF p(F) . (2s) 

The integral on the right-hand side diverges for a < 1; this means that  no 
coefficient of single-particle diffusion exists for temperatures smaller than the 
critical value cr/kB. This fact leads to the phenomenon of dispersive transport  
[21]. Another wellknown consequence of the model is sub diffusive behavior of 
the mean-square displacement of independent particles [22], 

< r2( t )  >,~ t 2/dw (29) 

where dw = 2/c~ for d > 2. 

191 



Klaus W. Kehr and Thomas Wichmann 

We now introduce many particles in a lattice where the random site energies 
are given by the exponential distribution (26). The equilibrium distribution over 
the energies is then the Fermi-Dirac distribution, 

f(E) = [1 + exp[~(E - p ) ] ] - i  (30) 

to be multiplied with the distribution of site energies (26). The chemical potential 
follows from the given equilibrium concentration 

f c = (31) 
o o  

We introduce a small disturbance of the equilibrium distribution, as formulated 
in (17), where now x is a discrete coordinate in one of the lattice directions. The 
investigations have been made in 2 and 3 dimensions. We observe [23] that  the 
initial amplitute decays diffusively, in accordance with (18). 

The results of the numerical simulations are shown in Fig. 7, together with 
the results of the effective-medium theory for this model. One sees that  the 
diffusion coefficient Dco11(c) extrapolates to the correct finite value for e ---, 0 
and c~ > 1, and to zero for c --* 0 and c~ _< 1. There is good agreement between 
the effective-medium theory and the simulations at smaller concentrations and 
rough qualitative agreement at larger concentrations. 

For small particle concentrations we can give the following qualitative picture 
[23]. Let us replace the actual distribution of the particles at finite temperature, 
according to the Fermi-Dirac expression, by a sharp distribution up to a "Fermi- 
level" E*. This pseudo Fermi-level is determined by 

E* 

f_ dE.(E) e ,  (32) 

i. e . ,  E* = ~r In c; note that E* _< 0. At small concentrations one may replace the 
many-particle diffusion problem by the problem of diffusion of few particles that  
are thermally excited above the pseudo-Fermi level E*. Since the concentration 
of blocked sites is small for small particle concentration, we may estimate the 
coefficient of collective diffusion by 

D:J, D :  1 = j ; .  

Evaluation of the integral gives 

1 
dEu(E) F(E ) (33) 

F0(~ - 1) (34) 
D -  c - ( ~ - O - 1  

This expression is plotted in Fig. 8 where also the numerical data  and the 
effective-medium result from Fig. 7 are reproduced. We note that  the quali- 
tative expression approaches the effective-medium result for c ---* 0. Expression 
(34) diverges for c ---+ 1, which is clearly outside of the range of the validity of 
the argument. 
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The small-concentration limit of (34) reads 

/70( 1 - 1)c ( { - : t )  (35) D 

I. e. , we predict a power-law behavior of the collective diffusivity in the model 
with exponentially distributed site energies, for c -~ 0. Fig. 8 demonstrates  that  
the data are consistent with this prediction. However, there are too few data to 
speak of a quantitative verification. 
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Fig. 7. Coefficient of collective diffusion as a function of the concentration of the lat- 
tice gas, for an exponential distribution of site energies. The different symbols represent 
simulation results of the parameters ~: (o) 10/7; (+) 1; (rT) 2/3; (x) 1/2; (A) 1/3. 
Stars indicate the limit of single-particle diffusion. The full curves represent the effec- 
tive-medium approximation. 

8 C o n c l u s i o n s  

We point out that  the coefficient of collective diffusion of lattice gases in lattices 
with site-energy disorder is exactly known in some limiting cases only. These are 

1. the trivial limit of small concentrations, c ~ 0 
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different symbols and the full curves have the same meaning as in Fig. 7. The dashed 
curves show the qualitative approximation (34). 

2. in linear chains, the limit of small vacancy concentrations, c ~ 1 
3. for d _> 2, the limit of saturated deep traps, c --~ 1 and F < <~ F0, when their 

concentration is small, ct <~ 1 - p c  
4. the limit of infinite-dimensional lattices. 

Comparison of the mean-field approximation and its first correction with nu- 
merical simulations has demonstrated that  the effect of correlations in the site 
occupancies of different sites in nonequilibrium situations is not yet understood 
for arbi trary concentrations of the lattice-gas particles. The discrepancies are 
most  pronounced for c ~ ct. Their proper t reatment  is certainly an open theo- 
retical problem. 

In higher-dimensional lattices, the phenomenological theory provides a good 
description for small particle concentrations, c << ct. The effective-medium the- 
ory constitutes an improvement for c < ct and it provides a qualitative overall 
description for all concentrations. Hence we conclude that  the problem of deter- 
mining Dcoll is now clarified for practical purposes. 

Collective diffusion may strongly increase with increasing particle concentra- 
tion when deep traps are saturated by a fraction of the particles, thus allowing 
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the remaining particles to diffuse uninpeded by trapping events. One extreme 
situation is provided by the exponential distribution of the site energies where 
the coefficient of single-particle diffusion vanishes for low temperatures. We have 
seen that  a coefficient of collective diffusion may exist at finite concentrations, 
due to the saturation effects of the traps. 

Finally we should also point out some obvious omissions in the work pre- 
sented. Tagged-particle diffusion, which is also interesting, has been omit ted by 
intention. Some data on tagged-particel diffusion have been given in [24]. Most 
severe is the neglect of interactions of the lattice-gas particles beyond the site- 
exclusion. Experimental  systems have interacting particles and there has already 
been considerable work on such systems, for instance work devoted to the prob- 
lem of universal response in disordered superionic conductors [25, 26]. Our hope 
was to contribute to the derivation of the coefficient of collective diffusion in 
rather idealized systems; apparently this is already a difficult task. 
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1 I n t r o d u c t i o n  

The general concept where charge carriers perform a random walk on a regu- 
lar or disordered lattice under the influence of a Coulomb force has found wide 
applications in a variety of fields, when a formulation in terms of molecularly 
defined quantities is required. This approach allows one to study systematically 
on microscopic and macroscopic scales quantities like the time- and frequency- 
dependent diffusion coefficient, the static and dynamic conductivity, the mo- 
bility, dielectric permittivity as well as different types of effective escape and 
reaction rates. The fields of application can be the dispersive transport in ioni- 
cally conducting solid electrolytes [1], diffusional dissociation and recombination, 
e.g. photodissociation [2], diffusion-controlled chemical and encounter reactions 
[3, 4, 5] diffusion-limited aggregation [6, 7], gelation [8], and segregation [9], as 
well as energy transfer processes between molecules, e.g. in biophysics [10]. 

The traditional, continuum Onsager approach [11, 12] is based on the Smolu- 
chowski equation [13, 14] extended by Kramers [15, 16] based on the Fokker- 
Planck and Kramers equations [17]. The above concepts are only valid asymp- 
totically and on macroscopic length scales. So far they are the main theoretical 
tools for the study of static and dynamic properties. 

The problem, studied here by means of random walks, can be generally clas- 
sifted as a thermally activated escape or dissociation process. In particular, the 
work is motivated by the "universal dynamic response" of low-conductivity ma- 
terials, characterized by approximate power-laws of the frequency-dependent 
conductivity and the related dielectric permittivity [1, 18, 19, 20, 21, 22, 23, 24]. 
Whether dispersive transport is mainly determined by single-ion motion or by 
collective phenomena is not yet completely understood. 

We systematically study, by standard Monte Carlo simulation [25], and by ex- 
act enumeration procedure [26, 27], c.f. Sect.3, the inhomogeneous random walk 
of a single ion in a periodic attractive Coulomb cutoff potential (c.f. Sect.2) for 
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short, intermediate and long-time scales, as a function of period length and in- 
verse temperature/~(= 1 / k B T )  (c.f. Sect.4). Our approach provides a promising 
supplement to the phenomenological "jump relaxation model" [1], the numerical 
"counter-ion model" [18], and geminate recombination [2]. Our results show a 
surprisingly complicated behaviour in the time domain. The present work also 
supplies the means to study the dynamics of a one-dimensional r andom walk in 
an arbitrary inhomogeneous medium. 

2 I n h o m o g e n e o u s  R a n d o m  W a l k  

We consider the random walk of a single ion on a one-dimensional periodic 
regular lattice (c.f. Fig.l). The repeated central segment with length N (note that  
N must be even because of the central symmetry, and the lattice constant is set 
to unity) includes a fixed Coulombic center which attracts a mobile ion located 
at site 1 = n + k g  by the static potential Vc(1) = - 1 / l ( k  + 1/2)N + 1/2 - II, 
illustrated in Fig.1 by the  dashed-dotted line. Here, n = 1 , . . . ,  N labels a site 
inside the segment and k = 0,+1,  =t=2,... labels the segments. The charge of 
the mobile ion and the fixed center is set to unity. As it is seen, we consider 
the simplified situation (justified below), taking into account only the attractive 
interaction between the ion and the center located in the same segment. 

N (=6) 
1" " t  
I I 

v ~ " v ~ ' ~  I ~ ' ~ - " " ~  I 
-4 -3  -2  -1 0 I I 2 3 4 5 6 I 7 8 9 10 II 

• x, /"  " \  / Vc "\' "" 
\ / \ / \ / 

\ / \ / \ / 

!_ _! !_ _! !_ _/ 

- ° .  [ 

Fig. 1. Schematically illustration of the ld discrete chain with periodic boundary con- 
ditions (for, e.g. N = 6). Ions (full circles) are jumping in an attractive Coulomb cutoff 
potential Vc (indicated by the dashed-doted line) produced by fixed charges (denoted 
by asterisks). The right and left jumps are indicated by the arrows and sojourns by 
loops. 

The local, discrete-time dynamics is completely defined by the site-dependent 
jump probabilities according to Metropolis et al. [25]. Note that  in one dimension 
the jump probabilities over the center, towards the center and those for jumps 
crossing the border between neighboring segments are set to 1/2; other jump 
probabilities are smaller for finite temperatures. In our model we truncated the 
range of the Coulomb potential to a given segment. This, however, is not an 
essential restriction since the periodicity N is a free parameter and can become 
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arbitrarily large. The truncation in the nearest vicinity of the center (c.f. Fig. 1) 
is quite natural since it is caused by the discrete character of the lattice. 

The main quantity studied is the time-dependent diffusion coefficient D(t) = 
([Al(t)]2)/2dt, where d is the dimension of space and Al(t) = l(t) - l(0) the 
displacement, l(t) is the position of the mobile ion at time t and we assume 
the initial site l(0) to be nearest to the attractive center i.e., at a mechanically 
stable site. This is at intermediate and low temperatures also the prevailing 
configuration at thermal equilibrium. A thermalization procedure is not used 
here by definition since we study in fact escape or dissociation phenomena. 

We also briefly compared our one-dimensional model with a three-dimensional 
random walk on a regular cubic lattice, where the attractive charge was fixed 
in the center of the repeated cell. Important for the further considerations is 
the genaral observation that  we are able to reproduce on short, intermediate 
and long-time scales the substantial aspects of the three-dimensional diffusional 
behaviour by the one-dimensional model. This is justified by the similarities of 
Fig.2a and 3a, as well as Fig.2b and 3b, respectively. In Fig.2 and 3 we present the 
diffusion coefficient as a function of time. The results in Fig.2 were obtained by 
the standard Monte Carlo simulation [25] for a finite, typical periodicity N = 10 
(Fig.2a), and for an infinite lattice g = c¢ (Fig.2b) for several temperatures. 
Here the ion was assumed to interact with all attractives centers in the other 
cells. The jump probabilities were chosen according to Metropolis et al. and the 
Ewald summation was used to calculate energy differences. In Fig.3 we show the 
corresponding results for the one-dimensional random walk obtained by a more 
efficient exact enumeration procedure [26], c.f. Sect.3. Note, that we considered 
here exponential jump-probabilities [28]. 

The restriction to the one-dimensionai model makes now our further studies 
more efficient. 

3 E l e m e n t s  o f  E x a c t  E n u m e r a t i o n  P r o c e d u r e  

Since the exact enumeration procedure was comprehensively described by Majid 
et al. [26], we restrict our considerations only to special features and important 
elements of the procedure used for our one-dimensional case. 

In Fig.4 we schematically illustrate how the method allows us to numerically 
calculate the distribution function P(l,t[lo = 0,to = 0) i.e., the conditional 
probability of finding a random walker (denoted by a full circle) at site I at time 
t on condition that  at time to(= 0) it was initially at site 4 ( =  0) nearest to 
the attractive center (denoted by an asterisk). This probability is determined 
recursively i) by the probabilities that the walker is at the nearest neighbour 
site one step earlier, and ii) by site-dependent right-jump WR(I), left-jump 
WL(I), and sojourn Wo(l) probabilities per step. Hence, we can store the elements 
P(l, tllo , to) in the form of the matr ix/5(4,  to) consisting of the vectors P__(tll0, to). 

Since the ion starts its random walk nearest to the center of the attracting 
Coulomb potential, the distribution function P(l, tllo,to) is strongly localized 
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Fig. 2. Diffusion coefficient D(t) for the 3d model as a function of time for several 
inverse temperatures fl for N = 10 (a), and for an infinite chain N = oo (b), obtained 
by Monte Carlo simulations assuming Metropolis etal.  jump probabilities. 

around the center, even for long-times, which is clearly visualized in the snap-  
shot pictures presented in Fig.5. This is the key to improve the efficiency of the 
exact enumerat ion procedure in our case since it allows us to cut off ( ~  90%) 
the long-range tail of the distribution function, even up to 106 t ime steps at 
intermediate and low temperatures.  The errors for the m e a n -  and mean-square  
displacement are smaller than 0.1%. Of course, when the tempera ture  is low, the 
localization is better.  

The large oscillations of the probability distribution visible for a free discrete 
random walk (i.e., at/3 = 0) confirm its well known feature that  the distance f rom 
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Fig. 3. One-dimensional diffusion coefficient D(t) as a function of time for several 
inverse temperatures fl for N = 50 (a), and N = c~ (b), obtained by exact enumeration 
procedure assuming exponential jump probabilities. 

the origin (measured in steps) reached by a walker has the same parity as the 
total  number of steps since its sojourn probability vanishes. Some influence of this 
effect can also be recognized for finite temperatures. Other type of oscillations 
are discussed in Sect.4. 

Having the ma t r ix /3 (4 ,  to) enables us to calculate many random walk prop- 
erties, but  in this work we mainly pay attention to the t ime-dependent  diffusion 
coefficient (discussed in Sect.4). However, to make a complernentary analysis we 
need an analytical formalism (which is in preparation). 
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F ig .  4. Schematic illustration of the exact enumeration procedure which recursively 
constructs path probabilities and hence occupancy probabilities at any site 1 at any 
time t. (The notation is described in the text.) 

4 R e s u l t s  a n d  D i s c u s s i o n  

In this section we report and discuss results on the static and dynamic diffu- 
sion coefficient obtained by the standard Monte Carlo simulations and by exact 
enumeration procedure for our one-dimensional model. 

4.1 Static Results 

In Fig.6 and 7 we show (by points) the exact asymptotic diffusion coefficient Doo, 
given below by (1), as a function of the periodicity N for several fixed inverse 
temperatures/3, and as a function of/3 for several values of N, respectively. The 
diffusion coefficient can be easily derived within the linear response theory in 
the form: 

D ~  = D(t ~ ~ )  = ~ Po,(O WR(Z) (1) 
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Fig.  5. Evolution of the probability distributions P(l,t[O,O) presented in t he  three 
snap-shot pictures. The solid line represents fl -- 1, while fl = 0 is represented by the 
dashed line (a) and doted lines (b),(c), respectively. (We used dots instead of dashed 
line to emphasize the main result given by the solid line.) 
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where Peq(l) is the nonhomogeneous equilibrium probability distribution. The 
dashed lines in Fig.6 were predicted by the known Smoluchowski formula for the 
asymptotic diffusion coefficient [29] derived from the Smoluchowski equation. 

1 

10-1 

10-2 

10-3 

lO-a 

t~tl l ~ x ~ x  1 

, , / 4 ~ '  a 5.5 
b. k ~ l ~ d  ~- - - -  S rno luchowsk l  

a, 

I I I _ _ L - -  I I I 

I0 10 2 103 IO t' 10 s IO s i0 ? 

N 

Fig. 6. Exact asymptotic diffusion coefficient D~ (points) given by (1), vs. period 
length N for typical inverse temperatures ~. The dashed lines represent the prediction 
of the formula obtained from the Smoluchowski equation. 

The data in Fig.6 exhibit a local minimum vs. N, that  is more pronounced at 
lower temperatures, which can be easily interpreted as follows. When N increases 
then the height and the width of the Coulomb potential barrier also increases (c.f. 
Fig.l).  At fixed ~ this leads to a decreasing Doo. However, when N is quite large 
another effect arises connected with the known observation [2] that  the Coulomb 
potential is steep near the attractive center, and also has an energetically fairly 
flat part far from it. Hence, for large N the ion perfoms asymptotically an almost 
free random walk in this flat, quite extended region. Thus, the mean jump rate 
of the ion increases and hence D~  also increases. Therefore, Doo approaches, for 
every temperature, its limiting value characteristic for free diffusion. 

In Fig.7 we present an Arrhenius plot of Doo for different N. In the low 
temperature regime the Van't Hoff-Arrhenius law with activation energy EA = 
V c ( N / 2 + I ) - V c ( N )  = 2(1-  N~--2CT_~) (c.f. Fig.l) well describes the data. This means 
that  the jumping process can be treated asymptotically as a simple overbarrier 
one at low temperatures. 

Hence, our results depend sensitively on the two paramters N and ft. We can 
recognize two limiting regions namely, i) the free diffusion (when N is large and 

not too high), and ii) a strongly temperature dependent one (in the high /~ 
regime and N not too large). 
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Fig. 7. The dependence of the exact diffusion coefficient Doo (points) on inverse tem- 
perature fl for three typical period lengths (N=2 is a separate case representing free dif- 
fusion). The oblique dashed fines represent the predictions of the Van't Hoff-Arrhenius 
law with an activation enery EA listed in the figure. (A preexponential factor in the 
Van't Hoff-Arrhenius law was treated as a free parameter.) 

4.2 D y n a m i c  R e s u l t s  

The concept used in the previous section can be extended to the description 
of our results for the t ime-dependent diffusion coefficient presented in Fig.8 for 
several inverse temperatures /3  at g = 50 (Fig.8a) and N -- oo (Fig.Sb). The 
points represent results of Monte Carlo simulations while the full lines result 
f rom the exact enumeration procedure. (The jump probabilities were chosen 
here according to Metropolis et al.. Such a choice of probabilities was made to 
obtain results which reach the asymptotic values quicker than the exponential 
[28], although we loose a more complex data structure at initial times.) Very 
good agreement between both independent methods is observed. 

The results from the exact enumeration procedure can be obtained for longer 
times and with higher precision since the approach is much more efficient (an 
order of one hundred in this range of time). Moreover, very good agreement with 
theoretical asymptotic values of the t ime-dependent diffusion coefficient, given 
by (1), is obtained. 

Note that  for intermediate temperatures the crossover regions in Fig.Sa are 
well defined by the two characteristic relaxation times v0 and too. The relax- 
ation t ime ~'oo = N2/2Doo defines in fact the beginning of the asymptotic 
region, whereas To estimates the end of the time interval where the particle 
only oscillates between the two equivalent sites nearest to the attractive cen- 
ter. These temperature dependent, odd-even oscillations are distinctly visible 
for short times in the plot of the mean-displacement(A/(t)/  of the walker as a 
function of time shown in Fig.9. Note that (Al(t)) does not vanish here since 
averaging over symmetrical initial positions is not performed. The relaxation 
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Fig.  8. Diffusion coefficient D(t) vs. time for several inverse temperatures fl for N = 50 
(a), and for N = oo (b). Downward pointing arrows without labels denote inflection 
points. The relaxation times r,, r0, and too are defined in the text 

t ime r0 is defined as the average residence t ime of the ion in an isoenergetic 
t rap  nearest  the center and is easily calculated f rom the t ime-dependen t  sur- 
vival probabi l i ty  kP(t) = [1 - ½ e x p [ - ~ # ) ]  ~ as v0 = 2 exp(4fl)  - 1. The  derivat ion 
of  k~(t) is s t ra ightforward because the walker performs in this case a Bernoulli  
r a n d o m  walk among  two equivalent sites. For completeness, we in t roduced  the 
relaxation t ime vs defined as the average t ime for an ion to s tay at a given site 
nearest  to the center. 

I t  is remarkable tha t  there is a characteristic inverse t empera tu re / ?c  for a 
given finite value of  N,  where the shape of  the curves changes (e.g. #c ~ 5 for N = 

206 



Random Walk in an Attractive Coulomb Potential 

0 . . . . . . . . . . . . . . . . . .  O . . . . . . . . . . . . . . . . .  

B=4 

0 2 z, 6 8 10 12 1/-, 
t IMCS]  

Fig. 9. Time-dependent mean dispacement (Al(t)) obtained by Monte Carlo simu- 
lation (points) and by exact enumeration procedure (solid lines) for several inverse 
temperatures ft. 

50, c.f. Fig.8a). For fl < fie and t > ro the mean-square displacement grows faster 
than linear with t ("superdiffusive"), whereas for ~ > fie it grows slower than 
linear ( 'subdiffusive"). The above observation may be explained by assuming, 
in agreement with the previous section, that at lower temperatures the particle 
cannot obtMn enough energy to make an overbarrier jump, and instead performs, 
during a long time, a restricted random walk in a given segment (valley) mainly 
around the center. Of course, finally the particle reaches the neighbouring valley. 
By increasing the temperature the particle also performs a quite intensive local 
motion around the center inside the segment, but becomes more susceptible to 
be occasionally absorbed by neighbouring valleys in a reasonably short time. 

Fig.8b is a special variation of the Fig.8a and requires an explanation. For 
infinite periodicity tic equals infinity (c.f. Fig.10) and D(t) behaves as for fl < tic 
with D ~  = 1/2 independent of ft. In this case the previous interpretation is in 
principle valid since the particle reaches a quite extended energetically fairly flat 
region during a finite time, performing then (an almost) free random walk. This 
must manifest in D(t) as a superdiffusive approach to D ~  since D(ro) < Doo 
for fl > 0. 

The complementary results for D(t) (at fixed fl) were presented in F ig . l l  for 
several values of N.  The results extend our earlier observations (c.f. Fig.6) and 
show that D(t) gets larger with increasing N, and approaches from below its 
limiting value given by the diffusion coefficient for infinite periodicity. 

Having the results shown in Fig.8 (as well as in Fig . l l )  we introduce initial 
and intermediate slopes (c.f. Fig.12 and 10, respectively). 

In Fig.12 we present the value of the initial slope s as a function of/3. (It is 
easy to calculate this slope analytically as well as numerically from the first two 
time-steps.) As it is seen 0 < s < 1 which is similar to the range of an analogous 
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Fig. 11. Diffusion coefficient D(t) vs. time for several periodicities N at a fixed inverse 
temperature /Y= 2. The points represent results of Monte Carlo simulation and the 
corresponding solid lines result from the exact enumeration procedure 

exponent predicted by the "universal dynamic response". 

In Fig.10 we present an intermediate slope a determined numerically at the 
inflection points (denoted by downward pointing arrows in Fig.8) as a function 
of fl, for different N. As it is already suggested by Fig.8a, the slope c~ has a 
local maximum vs./3 that well defines the temperature at which the ion is most 
susceptible to reach the energetically fairly flat region and/or  to be absorbed 
by a neighbouring valley. The shift of the position of the maximum of cr to 
higher/3 and the increase of the maximum with increasing N is consistent with 
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Fig. 12. The initial slope s (solid line) vs. inverse temperature ft. 

our previous results (c.f. Fig.8). From the presented dependence o~ vs. fl we can 
easily, numerically find the low-temperature threshold fl~ since then ~(fl~) = 0. 
The slope c~ seems to be an effective simple description of the ion dynamics at 
the crossover region. However, it requires further, mainly analytical study. 

5 S o m e  C o n c l u s i o n s  

The single-ion inhomogeneous random walk approach seems to account for some 
characteristic features of"  universal dynamic response". These features are in fact 
supplied by Fig.8 being the central result of this work. Namely, there is the initial 
power-law behaviour of D(t) with an effective exponent s for t < r0. For t > r0 
we observe two different cases: i) For/3 > fie, D(t) shows a subdiffusive approach 
to its limit D~o at finite N. This is also characteristic for a concentrated Coulomb 
lattice gas. ii) For/3 < /3¢ a superdiffusive approach of D(t) to its limit D ~  is 
clearly observed which seems to be characteristic for a single ion inhomogeneous 
escape random walk, not only in a Coulomb cutoff potential. We suppose that  
potentials having a steep sufficiently central part and flat sufficiently extended 
tail are also able to supply results similar to those presented in Fig.8. 

For further analysis of the results an analytical formalism is needed. A mat r ix  
continued fraction [17, 30], a continuous-time random walk model with different 
waiting-time distributions for forward and backward jumps [31], or a geminate 
recombination model [2] seem to be promising. 
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Abstract. A three-dimensional model consisting of a fluid in contact with a planar 
wall containing a lattice of adsorption sites is useful for studying phase transitions at 
the solid-fluid interface. Results have been obtained both for adsorption from a fluid 
of hard spheres and for deposition of a metal from a dilute solution of metal ions. The 
latter case is used to model the underpotential deposition of a metal onto a single- 
crystal electrode. The model explains the qualitative features of the voltammogram of 
the underpotential deposition of copper on the (111) surface of a gold electrode in the 
presence of bisulfate. 

1 Introduct ion 

For the past five years we have been studying the structured solid-fluid interface [1-9] 
using a three-dimensional model [10-11] of a fluid in contact with a planar wall which 
contains an array of sticky adsorption sites. The model, described in detail in Sec. 2, 
is equivalent to a two-dimensional lattice gas with n-body interactions which are 
simply related to the n-body correlation functions of the fluid. 

For the case of adsorption from a fluid of uncharged hard spheres, we have obtained 
accurate adsorption isotherms for the model as well as coexistence curves for first-order 
phase transitions which occur on the surface [1-3]. The effect of triplet correlation 
functions on these transitions has also been considered [6,7]. These results are 
described in Sec. 3. 

If a solution of metal ions is in contact with an electrode composed of the same 
metal which is at a potential less than or equal to a characteristic Nernst potential, the 
ions will be deposited in bulk on the metal electrode. In some cases, however, the 
metal ions can be deposited at a higher potential on an electrode composed of a 
different metal. This is called underpotential deposition. Since bulk deposition does 
not occur at such a high potential, underpotential deposition is useful for obtaining 
submonolayer deposition of a metal onto a crystalline electrode. Examples include the 
underpotential deposition of copper on gold or platinum, silver on gold, and lead on 
silver. 

An application of the model to the underpotential deposition of copper from a 
solution of copper(II) ions onto the (111) surface of a single-crystal gold electrode in 
the presence of bisulfate is discussed in Sec. 4. In particular, the voltammogram of 
the deposition process [12] contains two spikes which are well-reproduced by the 



model and which correspond to first-order phase transitions of submonolayer copper on 
the gold surface [4,5,8,9]. Both thermodynamic and kinetic aspects of the process 
have been considered [9,13]. This system is under active experimental and theoretical 
invetigation by several research groups. 

2 The Model  

The model [1,3,6,7,10,11] consists of a fluid of N hard spheres, radius c,  in contact 
with a hard planar wall at z = - ~ / 2  which contains a lattice of sticky sites. The 
partition function is 

1 f N -~H Z = - - j d r  e , (1) 

where 13 = 1/kT, and 

N 
H =  H 0+ ~: US(ri ) ,  (2) 

i=l 

H 0 being the Hamiltonian for the smooth wall problem. The sticky potential US(q) 
describing the interaction of a sphere at ri with the sticky sites is given as 

e--13U'(r,) = 1 + Z, Z ~5(q - R , ) ,  (3) 

R seA 

where ~. is a stickiness parameter, 8 is a Dirac delta function, and A is a lattice of sites 
at the contact plane which are displaced by or/2 in the z direction from the sticky sites. 

After integrating and rearranging terms we obtain 

N 0 
z / z o Y, [~'p (0)In = Z e -  ~U(R1""'R'a) , 

n=O n! { R~}~-~ 
(4) 

where Z 0 is the partition function and p0(0) is the contact density for the smooth wall 
problem, and U ( R  1 . . . . .  R n )  is the potential of mean force defined in terms of  the n- 
body contact correlation function as 

e-13U(RI""'Rn) = gOn(R 1 .. . . .  R n )  " (5) 

Converting the sum in Eq. (4) from labelled hard sphere positions on A to lattice 
sites of A yields 

~, = Z / Z  0 = ~ [~Lp01(0)JZti e-13u({ti }) , (6 )  

{t i } 
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where t i -- 1 or 0 depending on whether or not site i is occupied by a sphere in 
configuration {ti}. Equation (6) gives the grand partition function E for an equivalent 
two-dimensional lattice gas on A with a many-body interaction energy U({t i }) and a 
fugacity z = kp0(0). The fraction, 0, of occupied sites of A is then 

;Z 8 In ~ (7) 0 = l A  I 8-'£ • 

In most of our work we have used the Kirkwood superposition approximation [14] 

g0n(R1 ..... R n) = l"I g 0 ( l R i - R j l )  , ( 8 )  

(i,j) 

which results in an equivalent lattice gas with pair interactions 

U({ t i } )=  ~ eij titj ' 
<i j> 

(9) 

where ~.j is the pair potential of mean force, which varies with distance. 

3 Adsorption from a Fluid of Hard Spheres 

If the sticky sites form a triangular lattice with a lattice spacing d satisfying d<c< 
q3-d, then the spheres exclude first neighbors. If  we use the superposition 
approximation of Eq. (8), with the pair correlation functions equal to zero for first- 
neighbor separation and unity for more distant neighbor separation, then the equivalent 
lattice gas is the hard hexagon model which was solved by Baxter [15]. 

The hard hexagon model undergoes an order-disorder transition at 0, = (5 - q5)/10 = 
0.2764 and [~.p~(0)] c = (11 + 5q5)/2 = 11.09 [14]. Exact expressions have been ob- 
tained both for ~.p'~(0) as a function of 0 [16] and, within the Percus-Yevick approxi- 
mation, for ~p0(0)o3 as a function of p~3 [17,18], where p is the fluid density. 
Together, these expressions yield isotherms of 0 versus Ix~ 3 for various values of the 
temperature-dependent parameter ~/o 3 [1]. 

If c is much smaller than the lattice spacing d, we assume all the correlation 
functions for allowed configurations are unity. This gives an equivalent lattice gas 
without lateral interactions, which yields the Langmuir isotherm [2,7]. 

If c is slightly less than or equal to d, then we assume the superposition 
approximation, Eq. (8), with the pair correlation function assumed to be unity at 
second and higher neighbor distances. The model is then equivalent [1,11] to a lattice 
gas with a first-neighbor attraction e which is equal to the pair potential of mean 
force, i.e., exp(-~e) = g0(d). 

Two-phase coexistence curves in the 0, ~p0(0) plane have been calculated exactly 
for a lattice gas with first-neighbor attractions on several two-dimensional lattices. 
For the triangular lattice the critical parameters are [g0(d)] c = 3 and [~.p0(0)] c = 1/27 
[1]. For the case o = d, we used the Percus-Yevick approximation [17,18] to g~(c) as 
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a function of p~3 and obtained pc6 3 = 0.71 as an estimate of the fluid density at the 
critical point of the transition [1]. The Carnahan-Starling [19] approximation to 
g0(a) yields a similar estimate, pc~ 3 = 0.67 [6]. 

The inclusion of triplet correlation functions in the superposition approximation 
[6.7], combined with a closed form approximation of the triplet correlation function 
for three spheres in contact [6,7] and a Mtiller-Hartmann-Zittarz [20] approximation of 
the critical point of the equivalent lattice gas with three-body interactions [21] yielded 
a somewhat higher estimate of the critical density, pcc 3 = 0.84, indicating that triplet 
correlations are significant at high densities. 

Although exact isotherms for the lattice gas with attractions have never been 
obtained, exact coefficients in series expansions of these isotherms have been 
calculated for several lattices [22] to high order in terms of the variable y -- [~.p0(0) 
g0(d)q~]-t at high density, and in terms of y-] at low density, where q is the number 
of first neighbors to a lattice site. 

We constructed high and low density approximants to the isotherms, similar in 
form to Langmuir's isotherm [2,4,5,7,8,9] 

Ol(y) _ p(y-1) (10) 
1 + P (y -1 )  

1 - 0h(y) - P(y) , (11) 
1 + P ( y )  

where P is a polynomial with coefficients which are determined by matching the 
coefficients in the expansion of 01 and O h with the exact coefficients in the known 
series expansion of 0 at low and high density. 

Using a switching function such as [7] 

rl(y) = 21-{ 1 + erf [s(y - y -1)1} , (12) 

an isotherm which is accurate over the entire density range can be constructed as 

0(y) = 0/(y) rl(y) + 0h(Y) [1 - rl(y)] . (13) 

The parameter s in the switching function can be used as a measure of the sharpness of 
the transition in a realistic experimental situation. Alternatively, a simple 
approximate form for p(y-1) such as [9] 

p(y-1)  = kpO(O) + [gO(d ) _ 1]y--n (14) 

can be used to form 0 t, where n plays the same role as does s in the switching 
function. Another possibility is to construct a two-point Pad6 approximant which 
matches the exact coefficients in both the high and low density series expansions of 0 
[2]. 
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4 Underpotentiai Deposition of Cu on Au (111) in the Presence of 
Bisul fate  

For the case of underpotential deposition, the model hard sphere fluid consists of metal 
ions of the type which are discharged at the electrode. If these ions have an 
electrosorption valency ~, we generalize the fugacity to include the potential ~ at the 
contact plane of the electrode surface [2,4,5], 

where 

z = ; @ ( 0 , v ) ,  (15) 

pOl(O,q 0 = pOl(O,O ) e@{Mqx-~'oq (16) 

is the contact density of the metal ions. Here - e is the charge on an electron, and ~gref 
is an electrosorption reference potential which depends on the nature of the metal ion 
and elecwode surface. 

The isotherm, 0 versus q~, for the deposition is computed using the methods 
discussed in Sec. 3. The voltammogram, a plot of current intensity I versus voltage 
~g, is then derived from the isotherm by assuming the ions discharge as they are 
deposited, giving the current intensity as 

I=  0 0 _  ~0 d~ (17) 
0t 0~ dt 

The sweep rate d~/dt is kept constant, and the negative sign is in keeping with the 
convention that the current is positive during the stripping process, when d~/dt is 
positive. 

The model with these additions was used in the construction of a model 
voltammogram for the underpotential deposition of copper on the (111) surface of a 
gold electrode in the presence of bisulfate ions. The experimental voltammogram 
contains two spikes which occur during the stripping process at 0.22 V and 0.07 V 
[12]. The area under the spike at 0.22 V is about twice as large as the area under the 
spike at 0.07 V. 

We supposed the voltammogram spikes corresponded to first-order phase transitions 
which occurred on the electrode surface, and we proposed the following idealized three- 
step model for the deposition process [4]. First, at high values of ~ the bisulfate, 
remaining charged, adsorbs on the gold surface, with three oxygens of each bisulfate 
ion associating with a triangle of gold atoms, the sulfur atom of the ion being above 
an adsorption site (see Fig. 1). Packing considerations preclude two oxygens from 
being associated with the same gold atom. As is apparent from Fig. 1, this is 
equivalent to excluding sulfur atoms of neighboring bisulfate ions from being above 
neighboring adsorption sites. This adsorption process is thus equivalent to the hard 
hexagon model described in Sec. 3. The bisulfate ions form a 1F3 x ~ structure, 
occupying a triangular sublattice of the adsorption sites. 

Second, as the potential is made less positive, the copper ions are deposited and 
discharged on the honeycomb lattice of free adsorption sites, undergoing a first-order 
phase transition. Finally, as the potential is made less positive, a first-order phase 
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C 
Fig. 1. The open circles represent gold atoms, the dark dots represent adsorption sites, 
and adsorbed bisulfate ions are each represented by three lines. This figure first appeared in 
[4]. 

transition occurs asl copper ions displace the bisulfate ions and are deposited and 
discharged to complete a copper monolayer. 

The overall adsorption isotherm for the copper deposition, 0Cu, was approximated 
as 

where O H is an isotherm constructed for the deposition of copper on a honeycomb 
lattice, forming two thirds of a monolayer, and 0 T is an isotherm constructed for the 
deposition of copper on a triangular lattice, forming the final third of the monolayer. 

For reasonable values of the parameters, a model voltammogram was constructed 
which qualitatively matched the two spikes of the experimental voltammogram [4]. 
Recent experiments have shown that our model for the underpotential deposition of 
copper on the (111) surface of gold in the presence of bisulfate is essentially correct 
[23-25]. 

Our original treatment of the model, in which the molecular processes were treated 
as independent events is, however, an idealization. In order to explain the presence of 
a large "foot" on the high potential side of the experimental voltammogram peak at 
0.22 V, we assumed the bisulfate begins to desorb and becomes disordered before the 
copper begins to deposit, the copper bringing the bisulfate back to the surface to 
reform the ~r~ x ~ bisulfate structure at a potential near that at which the copper 
forms the honeycomb array [8]. This copper and bisulfate coadsorption is in 
agreement with recent experiments [25]. 
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We provided a tractable model for the copper and bisulfate coadsorption process by 
treating the bisulfate adsorption as a hard hexagon lattice gas, the coadsorption of 
copper being treated as effectively causing a change in the reference potential for 
bisulfate, which we approximated as [8,9] 

V's ' a  = 0 c .  Vs  c~ + ( ]  - ec , , )~s  ~ (19) 

The reference potentials for bisulfate on gold and on copper were determined from a 
consideration of the potential, ~fcrit, at which the bisulfate fugacity reaches the critical 
value of the hard hexagon phase transition, Zerit = 11.09. Setting Xp0(0,0) = 1, at 
25°C Eq. (15) and Eq. (16) yield 

~tsref -- ~l/crit - 0,06 V.  (20) 

If no copper is present in the system, we assumed the bisulfate layer becomes 
disordered at about ~crit = 0.45 V, yielding 

~s ~ = 0.39 V.  (21) 

This value is near the experimental potential of zero charge of gold (111) in the 
presence of sulfate [24]. 

If both copper and bisulfate are present, we assumed the bisulfate becomes ordered 
again at about the potential of the phase transition of the copper on the honeycomb 
lattice, ~crit = 0.22 V. Because of the hole-particle symmetry of the copper lattice 
gas, 0Cu = 1/3 at this transition, and Eqs. (19) - (21) yield [9] 

~s cu =-0.30 V.  (22) 

This value agrees with experiment [26,27]. 
By approximating the copper deposition for ~ > 0.22 V using a Langmuir 

isotherm, a model voltammogram peak was obtained which contained a foot [8,9] 
similar to the one seen in experiment [12]. In addition, kinetic effects [9,13] and the 
effects of diffusion into the interface [13] have also been treated, the inclusion of such 
effects being sufficient to produce a fitted model voltammogram which agrees quite 
well with experiment [13]. 

We plan to use the model to study other examples of underpotential deposition, and 
we plan to extend the model to Ireat the effects of lateral diffusion and the properties of 
incommensurate phases. 
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Abs t rac t :  The problem of oxygen diffusion in 123-YBCO is discussed. We 
briefly recall the type of experiments, their results and theoretical interpreta- 
tions. We observe the large spread of data values. The tracer diffusion coeffi- 
cient interpretation is based on the ASYmmetric Next Nearest Neighbor Ising 
model and its phase diagram. Inclusion of oxygen-vacancy next nearest neighbor 
( N N N )  hopping in the basal planes of YBCO leads to reconciling experimen- 
tal data and theory. We also observe that the newly found V-A transition in 
the ~tracer diffusion coefficient at low temperature can be a source of interesting 
effects including the mark of superconductivity onset. 

1 I n t r o d u c t i o n  

There are several important problems related to oxygen off-stoichiometry in 
recently (1988) discovered high critical temperature superconductors (HTS) [1]. 
The main questions are whether oxygen off-stoichiometry has an effect on the 
superconductivity origin, and next what role the off-stoichiometry plays on the 
normal state and superconducting properties. Therefore the first goal has been 
to obtain the phase diagram of the oxygen content induced crystallographic 
structure(s). 

The phase diagram calculations showing various oxygen vacancy ordered 
phases were based on essentially one model but used different techniques and var- 
ious values of the parameters. It is believed that the normal state properties are 
influenced by the ordering phase transitions and also that the superconducting 
properties are related to certain ordering of the system [2, 3]. 

Finally, and this is not the least of the interests of studying the oxygen- 
vacancy distribution related properties, is the use of vacancies as pinning centers 
for magnetic flux lines [4]. 

One early discovery was that in 123-YBCO (= YBa2Cu306+2~) the value of 
the off-stoichiometry parameter c was to be small in order to obtain a high criti- 
cal temperature To. Accordingly, the oxygenation process and the stabilization of 
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the oxygenation level are important conditions for the use of such materials un- 
der technological and scientific constraints. Thus, there is much work on oxygen 
in-  and out-diffusion. A review has been recently presented on such topics [5]. 
Some discussion and much literature can be found in the Ph.D. thesis of Poulsen 
[6] and LaGraff [7]. In Sect. 2, we will recall experimental investigations on such 
processes, but rather briefly since much work has been covered in ref. [5]. 

We shall briefly recall the theoretical models and techniques in Sect. 3. Two 
interesting Ph .D .  theses summarizing the literature, and discussing the models 
are those of Schleger [8] and Fiig [9]. 

In-  and out-  diffusion are concerned with kinetic effects which are due to 
the non equilibrium nature of the system, i.e. when the oxygen concentration 
does not correspond to the equilibrium one at the given temperature, or /and 
when a (rather important) oxygen chemical .potential gradient exists. A grand 
canonical ensemble can (and must) of course be used when the atomic concen- 
tration (i.e. a concentration gradient) varies in the sample. Furthermore, in-  and 
out -  diffusion are to be seen as surface or bulk processes. The question is raised 
whether one can distinguish between such processes. 

In Sect. 4 we will be concerned with a fixed oxygen vacancy concentration 
in the system. We will measure the so-called tracer diffusion coefficient D* (in 
absence of chemical potential gradient, but allowing for a concentration gradient 
of course) in contrast to the chemical diffusion coefficient D, which is the one 
appropriate for the in- and out-  diffusion. In Sect. 5 we will present and discuss 
relevant theoretical results on the tracer diffusion coefficient mainly. We will em- 
phasize findings at low and high temperatures. In so doing we can better (briefly) 
comment upon the fundamental question whether superconductivity and normal 
state properties are governed by anomalies in the diffusion coefficient(s). 

2 E x p e r i m e n t a l  I n v e s t i g a t i o n s  o f  I n -  a n d  O u t -  D i f f u s i o n  

The unit cell of 123-YBCO is shown in Fig. 1. Due to the oxygen off-stoichiomet- 
ry, vacancies occur at so-called 0(5) sites in deficient CuO planes. The O(1) 
sites on copper chains are occupied in the ground state of YBa2Cu3OT, but 
are vacant in YBa~Cu306. Apical 0(4) oxygens are thought to be relevant for 
the superconductivity mechanism. The crystallographic structure depends on 
the temperature and oxygen content (Fig. 2). Three major phases are observed: 
tetragonal (T), orthorhombic I (OI) and orthorhombic II (OII). The crystallo- 
graphic structure can thus be modified by the oxygenation process. 

Experimental investigations of in- and out-  oxygen diffusion have been re- 
viewed by Baikov et al. [5] for 123-YBCO (ca. 112 refs.). Let us recall that  
Baikov [5] distinguishes between direct and indirect methods. The direct meth- 
ods are gravimetry, volumetry, electronic and ionic conductivity, calorimetry, 
X-ray radiography, neutron diffraction, Raman spectroscopy, and nuclear reac- 
tion. Indirect methods relate the physical or chemical characteristics to the mo~ 
bility of oxygen through a theoretical concept: internal friction, structural and 
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Fig. 1. Crystallographic structure of 123-YBCO. 

spectroscopic studies, degradatiorl and aging processes, positron annihilation, 
Rutherford back-scattering, acoustic wave propagation, NMR, NQR,. . . .  

One should distinguish between the techniques which leave the structure un- 
changed and are thus steady state-like studies, and those which strongly modify 
the oxygen-vacancy distribution, and thus pertain to structural phase transi- 
tion studies, in particular O - T and OI - O I I  transitions. One should also 
distinguish between single crystals and (porous) polycrystalline materials. It is 
obvious that due to the presence of grain boundaries the oxygenation process 
will be easier, but not necessarily more uniform in the latter materials. Such 
studies have also shown the marked anisotropy of oxygen intake. It can be eas- 
ily demonstrated (Fig. 3) through e.g. high resolution polarized light microscopy 
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Fig. 2. Schematic phase diagram of 123-YBCO at intermediate temperatures. 

that  oxygen density is higher around intrinsic or extrinsic crack regions. 
Detailed analysis should most of all distinguish between bulk and surface 

(where some chemical change of oxygen is inevitable) diffusion controlled kinet- 
ics: see ref. [5] for a discussion. The relevance of the starting material (tetragonal 
or orthorhombic or multiphase, twinned or untwinned) should be emphasized. 
Atomic substitution can also influence the diffusion coefficient. 

From the examined experimental data [5], it can be noticed that  there is an 
enormous spread of values for the diffusion coefficient (log D varies between -4 
and -14, in the same temperature range), the activation energy (from tenths of 
eV up to 1.7eV), and the Arrhenius pre-exponent factor between 10 - l °  (!) to 
170 cm2/s). This testifies of a great variety of migration paths and jump phenom- 
ena depending on the experimental conditions. In our opinion the great difficulty 
is to distinguish between bulk and surface diffusion controlled phenomena. 

3 Models for Diffusion, but First for Ordering 

The models for the description of in- and out-  diffusion must necessarily take 
into account the above mentioned experimental and sample conditions. Inter- 
pretation of data taken by indirect methods, and resulting models, will not be 
considered here since they pertain to a different range of interest. Furthermore 
the surface barrier problem has been well discussed in ref. [5]. Thus we concen- 
trate here on theoretical work concerned by bulk diffusion. In fact, some warning 
must be made here concerning a too quick identification of the most common 
used model(s) for bulk diffusion with experimental measurements which often are 
(we still emphasize the fact) really controlled by surface diffusion mechanisms. 
We covsider that  such a distinction is not well made in ref. [5] alas. 

Microscopic diffusion models find their roots generally in the theory of ran- 
dom walks'on a lattice, be it regular or disordered. The particles (in the system 
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Fig. 3. High resolution polarized fight microscopy showing that oxygen density is higher 
around intrinsic or extrinsic cracks. 

discussed here, oxygen ions) interact through some potentials which can be de- 
fined on sites or on bonds. A lattice site can be either occupied by an oxygen ion 
or empty. The most simple model to cover such a situation is the Ising model 
or the equivalent lattice gas model. The exact values (or even the sign and the 
range) of the interaction energies, and the number of neighbors to be included, 
is still a mat ter  of controversy (see [7]). 

Most of the studies have dealt with the square 2-dimensional ASYmmetric 
Next Nearest Neighbor Ising (ASYNNNI) model [10]. Three types of effective 
pair interactions for the central O atom are defined (see Fig.4 for the site def- 
initions): the interaction with N N  at sites (1, 2, 3, 4) is defined by a repulsive 
V1 > 0, while with N N N  (5, 7 - indirect, via the Cu atom bridge) it is through 
an attractive V2 < 0, and with N N N  (6, 8 - direct) by a repulsive V3 > 0. For 
further reference the x and y axes have (0, 4) and (0, 1) site directions (Fig. 4) 
respectively. Each lattice site can be vacant or occupied by an O ion. It is found 
in agreement with experimental data [11] that (Fig. 2) there are essentially three 
major  phases tetragonal (T) at high temperature and near c = 0, ortho-! (OI) 
near c = 0.5 which contains copper-oxygen chains parallel to the b axis, and an 
ortho-II (OII) phase with a double cell (near c = 0.25) with every second chain 
removed. The OII phase is observed in small domains only and samples are 
usuMly then defected. 

Spatially modulated superstructures can also exist at zero temperature just  
like for a devils staircase [12]. In fact diffraction patterns for superstructures 
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Fig. 4. Sketch of the plaquette for studying oxygen- vacancy interchange in 2-dimen- 
sional ASYNNNI model [10]. Three types of effective pair interactions for the central O 
atom are defined: the interaction with N N  at sites (1, 2, 3, 4) is defined by a repulsive 
V1 > 0, while with N N N  (5, 7 - indirect, via the Cu atom bridge) it is through an 
attractive V2 < 0, and with N N N  (6, 8 - direct) by a repulsive Va > 0. The x and y 
axes have (0, 4) and (0, 1) site directions respectively. 

have been seen at x = 1/8, 1/2, 3/8, 4/7, 3/5, . . .  [13]. 

Beside such a discussion, one important  point is to warn about  studies re- 
stricted to two dimensions for describing a three dimensional system. Fiig [9] has 
shown the relevance of the c-axis parallel bond between O ions for determining 
the predicted phase diagram. 

Last but not least, Schleger [8] has pointed out that  inconsistencies arise in 
the lattice gas models as studied in most of the previous references. He points 
out to more chemically oriented defect models. Schleger [8] claims tha t  for the 
ordering (mainly the phase diagram) behavior one must  include the electronic 
structure with some detail, since the electronic properties dominate  the thermo- 
dynamics.  
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4 E x p e r i m e n t a l  I n v e s t i g a t i o n s  o n  D i f f u s i o n  f o r  F i x e d  

V a c a n c y  C o n c e n t r a t i o n  

In this section, we distinguish between the so-called tracer diffusion coefficient 
D* and the chemical diffusion coefficient D. Fick's first law reads 

in an isotropic system. When the concentration gradient varies with position one 
writes rather 

dc d2c 
- -  ~ - - D  :¢ 
dt dx 2" 

It is clear that  due to the anisotropy of the crystallographic structure in YBCO 
(see Fig.l) ,  a vector' formalism should be used and the coefficient D*, called 
the tracer diffusion coefficient, or the diffusivity, should be a tensor. Each of its 
components can be written as 

D* = a .  f . G . a  2, 

in terms of a mean jump frequency G, a jump distance a, a geometric factor a, 
and a correlation factor f which accounts for the fact that  ions do not necessarily 
move through random walk. When f = 1 diffusion is a random walk and f < 1 
indicates that  there is a greater chance that the diffusing ion will return to the 
site it has just  left. The diffusion coefficient is often analyzed as a function of 
temperature  T through an Arrhenius law in terms of an activation energy E, i.e. 

D* = Do exp( -E /kT) .  

The jump frequency is also often written in a form of an activation law as 

G = Go exp(-U/kT) .  

If the correlation factor is temperature dependent, E and U are related by [14] 

( d ( l n f )  "~ 
Z = U - k  

Hence a departure from an Arrhenius law is a sign of correlation effects. 
We have mentioned that  most investigations of oxygen diffusion in HTS have 

been carried out in presence of an oxygen chemical potential gradient. Therefore 
the measurements gave the value of the chemical diffusion coefficient D, related 
to D* by 

D =  D* {.1 + d(InT) 
\ 

where "/is the activity coefficient. The term in parentheses is called the thermo- 
dynamic factor. The latter can be different from unity in nonideal substances 
like 123-YBCO. 
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Clearly the methods of measurements must be distinguished, i.e. one must 
check whether the pressure of oxygen around the sample varies or not. This goes 
true for impedance measurements as well. Most of the data scattering recalled 
here above can probably be traced to this condition. 

A type of local probe experiment which avoids the in-  and ou t -  diffusion 
and can be used for fixed oxygen concentration is the SIMS technique [7]. An- 
other, but  inherently averaging the processes, is the internal friction based on 
relaxation technique [7]. Except ref. [15] to our knowledge, all works pertain to 
temperatures above 300 K. References to other techniques mentioned here can 
be found in ref. [5]. 

Major findings [7] to be recorded include: 

1. diffusivity is a very weak function of partial oxygen pressure, and of oxygen 
concentration dependence 

2. Arrhenius plots suggest a single type of diffusion mechanism in the range 
300-850 C, with an activation energy of the order of 1 eV, irrespective of the 
O or T phase, 

3. diffusivity is highly anisotropic with D*JD* = 10 -4 and 10 -2 at 400 and 
800 C respectively. The time indicative of relaxation in stress-stain cycles is 
of the order of 10-1 ~ sec considered to be characteristic of O (1) - O (5) j nmps. 
The relaxation time follows an Arrhenius law with an activation energy of 
the order of 1 eV also. 

5 Theoretical  Investigations on Diffusion for Fixed 
Vacancy Concentration 

Theoretical work must touch upon the following: 

- the anisotropy of oxygen diffusion 
- the concentration and temperature dependence of the diffnsivity 
- the activation energy value 
- the effect of correlations 
- the influence of defects, intrinsic like twins or extrinsic like substitutional 

atoms, cracks, et. 

The first rather detailed analysis of self-diffusion is by Kishio et al. [16]. 
Bakker et al. [17] have led others into focussing the attention on diffusion as 
mainly a CuO plane problem, eventhough they warn that this is only a part  of 
the general problem of oxygen-vacancy mobility in YBCO. 

Ronay and Nordlander [18] have drawn attention to the fact that  activation- 
free displacement is possible in [1/2, b, 0] channels of vacancies in the basal plane 
for c = 0.5 and c = 0. Other low values of the activation energy can likely be 
found for specific oxygen concentrations when ordered phases [12] corresponding 
to Fibonacci or rational values of the concentration exist. In these cases ordered 
domains arid free row patterns exist. They are seen in Monte Carlo simulations 
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F i g .  5. Ordered chevron domain  and free row patterns allowing for the O diffusivity 
in the ab plane of 1 2 3 - Y B C O  at concentration c = 0.2 and temperatures  T = 0.02 and 
0.03 eV [21]. 

(Fig. 5). In the same spirit, Islam et al. [19] have used atomistic calculations for 
the O diffusivity. 

Let us also quote the molecular dynamics calculation of Zhang and Cat- 
low [20] at 1400 K. 

The ASYNNNI model has been introduced in [10] and used in a Monte Carlo 
study to calculate the tracer and chemical diffusion of oxygen ions in HTS. 
It was assumed that  the diffusion takes place only in the ab-plane - hence in 
the simulation the oxygen ions move along the edges of the square grid. The 
potential barrier, Q,  surrounding an oxygen ion was put equal to zero. An ion 
could jump only to one of its nearest neighboring sites, provided it was empty. 
The Kawasaki dynamics and the standard Metropolis algorithm have been used. 
The tracer diffusion coefficient shows a strong dependence on the oxygen content 
and on the temperature. Within the plane the diffusion was anisotropic at low 
temperatures and the activation energy showed a maximum. 

An extension [21] of the work [10] consisted in choosing a different algorithm. 
In [10] the site to which a given particle may jump was chosen at random. In [21] 
the site selection is weighted through a probability depending on the energy dif- 
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ference between the initial and the possible final configurations. Also the limita- 
tion Q = 0 has been lifted. The algorithm turned out to yield the same results 
for the same data. However when looking at lower temperatures  than those ex- 
amined in [10] an interesting change of the diffusion coefficient dependence on 
the oxygen concentration has been found. At low temperatures  the diffusivity 
has a min imum at concentration c = 0.5 (corresponding to every second chain of 
oxygen sites being occupied), whereas above a certain tempera ture  the diffusiv- 
ity has a max imum (Fig. 6). We called the phenomenon the V-A transition. The 
tracer diffusion coefficient was also concentration dependent and the activation 
energy had a maximum. 

- 4  
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- I O  
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0.04 
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Fig. 6. Appearance of a V - A transition as a function of oxygen concentration c at 
low temperature. Symbols correspond to various temperatures in eV. 

Another refinement of the Salomons and deFontain paper  [10] was presented 
recently [22], where the oxygen ions were allowed to jump also to their next- 
nearest neighboring sites, but not across the Cu atoms. 

The major  findings are: 

- the tracer diffusion depends only weakly on the concentration of oxygen ions, 

- the anisotropy in the ab plane only occurs for untwinned crystals and in 
ordered domains: the ratio D*/D* varies from 6.75 to 2.5 at tempera tures  + /  - 

b e t w e e n  0.02 eV and 0.12 eV, 
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- the Arrhenius plots give nearly straight lines within the examined tempera- 
ture range of 0.02 to 0.12 eV, 

- the correlation factor depends significantly on c only for low T, i.e. below 
0.04 eV, 

- the diffusion is taking place along the copper oxygen chains, i.e. 0(5)-0(5)  
or O(1):O(1), but at low concentrations of oxygen ions the vacancy diffusion, 
i.e. O(1) to 0(5) jumps, is also very important, 

- the activation energy is very low due to channels which exist in untwinned 
systems. It has a maximum at c = 0.25 when the basal plane can be the 
most disordered. 

We conclude that  the variation in activation energy values which is reported, 
e.g. in [5] should be correlated with the degree of twins, beside taking into ac- 
count specific surface features like cracks an<] chemical inhomogeneities. This 
implies a deep understanding of the diffusion mechanism as a function of con- 
centration, i.e. a description of the microscopic features like the number of chain 
fragments which form twins, tweeds and chevron patterns. 

One should note that the 2-dimensional N N N  Ising model has been studied 
much before the field of HTS. Indeed the model applies to surface coverage by 
adatoms [23]. Murch has investigated the N N  repulsive and N N N  attractive 
interaction in a lattice gas at 50% coverage [24], while Sadiq and Binder have 
studied the N N  repulsive and N N N  repulsive interaction for various tempera- 
tures and coverages [25]. In fact a recent series of papers by Uebing and Gomer 
studies various possibilities among the interactions [26]. See the review article by 
Gomer for a more complete presentation of various quantities of interest, and re- 
lated models [27]. See also the recent work of Bulnes et al. [28] on the simulation 
of tracer diffusion on heterogeneous energy surfaces. 

6 E f f e c t  o f  O x y g e n  D i f f u s i o n  o n  N o r m a l  S t a t e  P r o p e r t i e s  

The above discussion applied to effects in the CuO planes. Normal state prop- 
erties are much governed by electronic properties in the CuO2 planes. We can 
speculate that  anomalous diffusion properties in the CuO planes influence the 
behavior of charge carriers in the CuO2 planes by Josephson-like or other cou- 
plings. Among the normal state properties let us mention that a change in proton 
mobility occurs in parallel to oxygen diffusion changes [5]. 

It has been also observed that the superconductivity fluctuations are marked 
in the so-called excess electrical conductivity up to ca. 2Tc [29], i.e. near to the V-  
A transition temperature. Secondly, the Hall number also presents a break in the 
vicinity of this temperature [30]. In the latter case, the effect markedly depends 
on the oxygen stoichiometry. The thermoelectric power near room temperature 
also presents some anomalous behavior [31] which could be related to a change 
in diffusivity. 

The above points do not rule out the role of the apical oxygen in controlling 
the origin of superconductivity in the HTS. On the contrary, two dimensional 
and three dimensional effects are likely intermixed in HTS. 
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G a t i n g  of  V o l t a g e - D e p e n d e n t  S o d i u m  Channe l s  
in E x c i t a b l e  M e m b r a n e s  - a cont inuous  Proces s?  

Michal Bartoszkiewicz 

Department of Biophysics, Medical School, Wroctaw, Poland 

1 I n t r o d u c t i o n  

1.1 Excitability and voltage-dependent ionic conductance 

The: most fundamental property of nerve cells (neurons) is their ability to gen- 
erate and conduct electric signals in response to various stimuli [1]. 

In order to be "readable" for a neuron, every stimulus must be "translated" 
into a change in voltage across the membrane of the cell body (Fig. 1). This 
change is then propagated (towards another cell) along a cell process called 
axon which may be regarded as a cylinder. In the case of short-distance commu- 
nication between neurons the physical picture of propagating the signM is not 
complicated. Namely, the spread of a voltage change applied to the cell body of 
a short neuron may be satisfactory described by the same linear cable equation 
Which was used by Kelvin to theoretically treat signal transmission along an 
undersea telegraph cable [2]. 

However, this so-called passive signalling is not sufficient in the case of long 
axons. The space constant, that is the distance over which the amplitude of the 
voltage change falls off by a factor of l /e ,  is for an axon of order 10 -3 m, whereas 
the same axon may be more than one meter long! To overcome the problem 
of this relatively strong signM attentuation, larger neurons have developed an 
ability to generate and conduct special electric signals called action potentials 
or nerve impulses. From the physical point of view the action potential is again 
a local, temporary change of voltage across the axon membrane, but this time it 
will travel along the membrane with constant amplitude. A cell able to generate 
and conduct an action potentiM is called excitable (not only a neuron, but Mso 
a muscle cell may be exictable). 

Not every stimulus, that is, not every locM change of voltage across the 
excitable membrane produces an action potential. Firstly, the electric potential 
difference between the interior of the cell body and its surrounding (this voltage is 
called by electrophysiologists the membrane potential) must increase. Secondly, 
an action potential will be fired only when the membrane potential of the cell 
body exceeds some threshold value - if this condition is not met, the excitable 
cell will respond in the passive way (like a telegraph cable or a passive neuron). 
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extracellular fluld 

Fig. 1. A neuron. Dendrites (a) receive information from other cells. The cell body (b) 
is the metabohc center of the cell. The long tubular process (c) whose initial part was 
drawn is called axon - its length varies from mflimeters to meters, depending on the 
function of the cell. At rest, there exists a high electric potential difference between 
the interior of the neuron and the extracellular fluid (about -70 mV), called the resting 
potential of the cell. 

If, however, the threshold value of membrane potential is achieved, a burst 
of electrical activity is observed - there is further, spontaneous rise in membrane 
potential (depolarization) in the stimulated region (Fig. 2). The extensive work 
of Cole, Curtis, IIodgkin, Huxley and Katz has shown this triggering of the initial 
depolarization to be due to a transient increase in membrane conductance for 
sodium ions [1] (because the electrochemical potential of sodium is higher in the 
extracellular fluid than inside the axon, increasing the sodium conductance leads 
to an increase in sodium influx in the axon and thus to a depolarization). The 
triggered local depolarization (action potential) propagates along the axon by 
means of local, longitudinal electric currents which flow between the excited and 
the adjacent unexcited regions. Since the currents are large enough to bring the 
latter to the threshold, the action potential "jumps" from the excited region to 
the neighboring resting one - the electric signal may thus travel with constant 
amplitude [1]. 

1.2 G a t i n g  currents~  v o l t a g e - d e p e n d e n t  s o d i u m  c h a n n e l s  a n d  g a t i n g  
p a r t i c l e s  

One may say that the phenomenon of excitability is based on the voltage depen- 
dence of so'dium conductance of the excitable membrane. What  is the molecular 
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Fig. 2. Action potential (local picture). When the membrane potential is locally 
brought to the threshold value, there is a further, spontaneous depolarization of the 
stimulated fragment of the membrane (a). If the initial depolarization does not reach 
the threshold, the axon will respond like a telegraph cable (b). The action potential 
is due to a transient increase in sodium conductance (c). The recovery to the resting 
potential takes place by means of an outward, voltage-dependent current carried by 
potassium ions. 

mechanism of this voltage dependence? Hodgkin and Huxley wrote in 1952 [3]: 
"Details of the mechanism will probably not be settled for some time, but  it 
seems difficult to escape the conclusion that the changes in ionic permeabili ty 
depend on the movement of some component of the membrane which behaves 
as though it had a large charge or dipole moment.  If such components exist it 
is necessary to suppose that  their density is relatively low and that  a number of 
sodium ions cross the membrane at a single active patch. Unless this were true 
one would expect the increase in sodium permeability to be accompanied by 
an outward current comparable in magnitude to the current carried by sodium 
ions" and added :"...there is no evidence from our experiments of any current 
associated with the change in sodium permeability". 

The current accompanying the change in sodium conductance that  Hodgkin 
and Huxley were not able to detect is in newer terminology called "gating cur- 
rent".  More than twenty years later it has been shown that  the current exists 
[4]. However, the amplitude of the gating current is so small (as related to the 
sodium current) that  the "structural" prediction of Hodgkin and Huxley cited 
above still "had a solide physical basis. What is more, the prediction turned out 
to be completely correct. 
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The "single active patch" supposed by Hodgkin and Huxley to be used by 
a number of sodium ions during excitation appeared to be a small, selective 
"aqueous pore" formed by a large glycoprotein called sodium channel [1] (be- 
cause of the high Born energy [5], any hydrophylic ions practically cannot pene- 
trate the lipid "core" of a cell membrane and thus need special transport mech- 
anisms). The channel, like many other ionic channels of biological membranes, 
may be "closed" (not permeable to ions) or "open" (permeable), as directly 
proven by single-channel recording [1] (there is a third, non-conducting state 
called "open inactivated" which will be mentioned below). Since the sodium 
channel plays a central role during excitation, it is of course expected that its 
opening probability depends on voltage. This is indeed the case - the probabil- 
ity dramatically increases above threshold (Fig. 3). Note that the sodium influx 
which leads to a further depolarization during an action potential causes in turn 
a further increase in sodium conductance (see Fig. 2) - a good example of posi- 
tive feedback in biological systems. 

After establishing the existence of voltage-dependent sodium channels it be- 
came clear that the component of the excitable membrane whose spatial posi- 
tion controls the membrane conductance for sodium ions should be a part of 
the sodium channel. The component, called nowadays "gating particle", "gating 
charge" or "voltage sensor", is expected to have two properties. Firstly, it should 
be able to "measure" the local electric field strength within the membrane. Sec- 
ondly, it should have the property of "switching" the channel protein between 
the closed and the open state (and vice versa), the probability of the process 
depending strongly on the result of the electric field strength "measurement". It 
is very likely that the major components of the gating particle (voltage sensor) 
are placed in a highly charged part of the sodium channel protein called the $4 
segment [7]. 

2 G a t i n g  c u r r e n t s  - e x a c t  d e f i n i t i o n ,  p r o p e r t i e s  a n d  

m o d e l l i n g  

2.1 Defini t ion and basic p r o p e r t i e s  of  gat ing cur ren t  

The gating current was introduced above as an electric current due to a non- 
equilibrium displacement of charged molecules within the membrane (accompa- 
nying a change in sodium conductance). Since many currents will flow across 
the excitable membrane when a voltage step is applied, the experimental deter- 
mination of the current is not simple. Usually, ionic currents are eliminated by 
using channel blockers (toxins). The membrane is held under constant membrane 
potential (holding potential) and then suddenly depolarized to a new command 
voltage (voltage-clamp conditions). The gating current, ig(t), is now calculated 
according to the following definition : 

ig(t) = I ( t )  - Ic(t) - I I ( t )  
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Fig. 3. Membrane potential dependence of fraction of sodium channels open 
(rat-brain-II sodium channels expressed in Xenopus oocytes), calculated from Eq. (8) 
of Ref. 6. The dependence was experimentally determined by measuring the macro- 
scopic sodium conductance under voltage-damp conditions (membrane potential held 
constant after depolarization) . Since the activation of the macroscopic conductance is 
a kinetic process (in a voltage-clamp its relaxation time is of order 10-4s , the exact 
value depending on membrane potential), it should be added that the value of fraction 
of channels open refers to the final "steady-state" (the quotation-marks reflect the fact 
that even under voltage-clamp conditions the sodium conductance eventually falls to 
zero due to another kinetic process called "inactivation" of sodium channels which is 
responsible for the decay of sodium conductance in Fig.2). 

where I(t) is the total  current response, I¢(t) the capacitance current and Il(t) 
the "leakage" current of undetermined basis. Both the (linear) capacitance cur- 
rent  and the leakage current must be determined by independent procedures 
(using membrane  potentials at which the gating current is negligible) . 

Fig. 4 shows the t ime course of a typical gating current. The rising phase 
of the current is most probably artefactual. I ts  shape depends strongly on the 
voltage risetime which varies from a few to tens of microseconds. 

The gating current is approximately two orders of magnitude smaller than 
the sodium current (in the case of the squid axon the amplitude of gating current 
is of order 10 pA/cm2) .  Also, the "relaxation time" of the current (hundreds of 
microseconds) is smaller than that  of the corresponding ionic current. At the 
beginning of gating current investigations the current was successfully fitted by 
one exponential.  Recent measurements have found the kinetics of gating current 
to be much more complex [8, 9]. To present the data, the gating current is 
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Fig. 4. The shape of a typical gating current measured in response to a depolarization 
(the ON response). The time constants of the decay s well as the amplitude of the 
current depend on both membrane potential V and the holding potential Vh. Further 
explanation in the text. 

usually approximated by a sum of decaying exponentials. In the language of this 
approximation the gating current has at least four components, including a fast 
decay of about 10 #s [8]. Additionally, for depolarizations above 0 mV the initial 
spike is followed by a characteristic shoulder which has been proven not to be 
an artifact [8]. 

Another important variable characterizing the gating process is the so-called 
(displaced) gating charge Q defined as the time integral of gating current. Fig. 5 
shows its voltage dependence. The Q(V) curve is shifted to the left as compared 
to the fraction of channels open in Fig. 3 (this immediately excludes simple 
models in which there is only one closed state of the channel). As expected, 
the Q-V relationship depends on the holding potential (that is, on the initial 
distribution of gating particles). 

Though the kinetics of a single channel may be observed in single-channel 
recording [1], this kind of measurements does not provide any information con- 
cerning the complex physical events which precede the final transition between 
the closed and the open state (the transition itself is seen in single-channel 
recording as an instantaneous rise in electric current). The measurements of 
macroscopic gating currents are thus still a powerful tool leading to better un- 
derstanding of the actual physical nature of voltage gating. 

2.2 Models  of  gating 

The amino acid sequence of the basic unit of the voltage-dependent sodium 
channel is known [1]. Also, some functional elements of the protein, like the 
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voltage sensor or the permeation path, have most likely been recognized, at 
least in part (see Ref. 10 for a discussion). However, both the large molecular 
mass and the complex structure of the channel protein make a detailed physical 
analysis of the dynamics of the channel impossible. In particular, the molecular 
mechanism of gating still remMns obscure. Mathematical models of gating are 
therefore forced to start with very general physical ideas. 

The models usually assume that the whole gating current is due to the dis- 
placement of gating particles. Though there are, of course, other charged com- 
ponents of an excitable membrane (e.g. some amino acid residues), there is some 
evidence that  the major part of the current indeed reflects the movement of 
those charges which control the state of the sodium channel [11]. 

K i n e t i c  m o d e l s  of  g a t i n g  The first kinetic model of gating was created by 
Hodgkin and Huxley [3]. Though their equations originally served to describe 
purely phenomenologically the kinetics of sodium conductance activation mea- 
sured at various membrane potentials in a voltage-clamp, then they were as- 
cribed a tempting physical interpretation. 

As mentioned above, Hodgkin and Huxley found that the number of gating 
particles per channel should be low (as compared to the number of ions perme- 
ating a sodium channel during a single opening). Let the number be n. Let us 
next assurfie that the gating particles are identical and independent, and that  
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they may occupy two states, A (at one side of the membrane) and B (at another 
side of the membrane), the transitions between them being instantaneous. Let 
us finally postulate that the probability m of finding a gating particle in state A 
at time t after a change in membrane potential is governed by the simple kinetic 
equation: 

din(t, V) _ a(V) (1 - m) + fl(V)m (1) 
dt 

where a and fl are the voltage-dependent (forward and backward) rate constants. 
Now, if a channel is open only when all respective gating particles occupy the 
state A, then the fraction of open channels F(t, V) and the gating current ig(t, V) 
will read: 

r(t ,  V) = , ~  (t, V) (2) 
d re(t, V) (3) 

ig(t, V) ," dt 

Putting: 
, ,  = 3 (4)  

solving Eq. (1)for  V = c o n s t  and introducing the solution into relation (2), 
ttodgkin and Huxley very nicely fitted the family of time courses of sodium con- 
ductance obtained in a voltage-clamp for a broad range of membrane potentials. 
Since sodium channels are also subject to another kinetic process called inac- 
tivation, to calculate the fraction of conducting channels G(t, V) Hodgkin and 
Huxley additionally assumed that: 

C(t, V) = r( t ,  V) h(t, V) (5) 

where h is the probability that a channel is not inactivated (statistical inde- 
pendence assumption). An "inactivating particle" was introduced and a kinetic 
equation was postulated for the probability h(t, V) identical in shape to that 
describing the behavior of the gating particle. However, since only the process 
of activation (closed-open not inactivated transitions) and the reverse one (open 
not inactived-closed transitions) are of interest here, I am omitting all the com- 
plex problems connected with the inactivation of channels. Though activation 
and inactivation appeared not to be entirely independent, they may be regarded 
as separate processes. This means in particular that Eqs. (2) and (4) describe 
quite correctly the whole time course of sodium conductance when inactivation 
is removed by means of some chemical agents (that is, when transitions to the 
inactivated state are impossible). 

Though the sodium conductance is "spatially discrete", supplementing the 
classical cable equation by the ttodgkin-tiuxley equations for ionic conductances 
gives a very good description of action potential propagation (all the equations 
are nonlinear this time!). The physical reason for this convergence is the fact that 
the space constant of a typical axon is much greater than the distance between 
channels [12]. 

Can the till model describe quite correctly not only the family of sodium 
currents and the propagation of action potential, but also the gating currents? 
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As far as the complex kinetics of gating current mentioned above is concerned, 
the answer is negative. Indeed, when the membrane potential is constant, then 
a respective solution of Eq. (1) reads: 

= a + b e x p ( - t / c )  (6) 

where a, b and c are appropriate constants. Inserting now Eq. (6) into relation 
(3) we see that the gating current predicted by the HH model has only one 
exponential component. Besides, the formalism fails to properly describe some 
experiments in which the membrane is repolarized before gating current falls to 
zero (see Ref. 13 for a discussion). 

It is obvious that the HH model is equivalent to the following sequential 

3c~ 2a c~ 
< - - - - -  ( , < ,  

C 1 6 2 C 3 0 (7) 

model: 

The HH scheme may thus be regarded as the first sequential kinetic model of 
gating. Also the later kinetic models of gating are often sequential, but  they 
include a higher number of closed states. Moreover, the gating particles are not 
considered to be identical [14, 15], that is, no strong constraints like those in 
Eq. (7) are put on the rate constants. The last assumption has recently been 
supported by the structure-function investigations. The sodium channel protein 
includes four internal repeats (homology units), each of them containing six 
transmembrane helice stretches (segments S1-$6) [1]. As mentioned before, the 
major components of gating particles are most likely placed in the $4 segment. 
However, identical mutations in the $4 segment of different homology units do 
not lead to identical changes in gating current [7]. 

A higher number of closed states allows to account for a variety of experimen- 
tal facts like the gating current dependence on voltage prepulses or the complex 
kinetics of the current. Information obtained from single-channel measurements 
may be employed when constructing more complex models [15]. The models are 
flexible enough to take into account new experimentals facts by introducing new 
transitions. For instance, the fast component of gating current mentioned above 
may be described within an existing multistate kinetic model of gating when 
a single transition carrying one elementary charge is added [8]. 

In kinetic models all transitions are instantaneous, carry various electric 
charges and depend on voltage. Since the number of states often exceeds 10, 
the question arises if such a big number of conformational changes is possible in 
the channel protein during transition to the open state. Of course, when con- 
sidering a big number of closed states the kinetic models approach a continuum 
description. 

Cont inuous  models  of gat ing and  the  electrodiffusion mode l  The con- 
tinuous models of gating assume that there is a slow movement of gating particles 
[16] (or, a slow conformational change of the channel protein [17]) followed by 
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a fast transition to the open state. The relaxation time of the slow process is 
assumed to be comparable to that of the macroscopic gating current (hundreds 
of microseconds). Let us ask the fundamental question if this assump.tion is jus- 
tified in view of what is known about the internal dynamics of proteins. It has 
recently been pointed out that a protein may, within the native state, undergo 
numerous conformational changes whose relaxation time varies from 10 -11 to 
105 s [18], so that the answer seems to be positive. One of the possible molecular 
realisations of the process is that proposed by Catterall within the so-called slid- 
ing helix model [19]. The main idea of the model is that a change in membrane 
potential causes a charged transmembrane helix (a part of the channel protein) 
to undergo a serewlike motion. Since electric charges are displaced, their move- 
ment gives rise to gating current. As far as I know, the relaxation time of the 
process has not been determined yet, but from the physical point of view it really 
might be of order 10 -3 s. 

The electrodiffusion model of Neumcke, Nonner and St£mpfli [16] assumes 
that gating particles are point charges which may move in a dielectric "slab" of 
the membrane. The movement is perpendicular to the surface of the membrane. 
The gating particles are identical and do not interact with each other. The state 
of a channel (open or closed) depends on the position of the gating particles 
in such a way that the channel is open only if all respective gating particles 
are in a specified region of the slab ( Xth <~ X <~ d, where d is the thickness of 
the slab). The electrodiffusion model may thus be considered as a continuum 
generalization of the Hodgkin-ttuxley model described above. 

The probability density P(x, t) of finding a gating particle between x and 
x + dx at time t after applying a voltage step is postulated to be governed by 
the following Smoluchowski equation (constant force approximation): 

OP(~,t) 1 ( Vo+qVo, 0P(x , t )  0 2 p ( x , t ) )  
- f d + k T ax (8) 

where f is the phenomenological friction coefficient, U0 that part of the gating 
particle potential energy which does not depend on the external field, q the 
charge of the gating particle, Vm the membrane potential and k T the Boltzmann 
factor. When Vm =const,  Eq. (8) is linear. The boundary conditions reflect the 
fact that a gating particle cannot leave the slab, whereas the probability densities 
P(x, 0) and P(x, oo) are assumed to be given by the Boltzmann distributions 
corresponding to the holding and the target potential, respectively. 

The number of channels open, fop(t), and the gating current, ig(t), now 
compute [20]: 

f fop = P"(x, t) dx (9) 
t h  

ig - N q d - -  ~0 d d -  dt xP(x , t )  dx (10) 

where n is the number of gating particles per channel and N the number of 
channels. 
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A diffusion type equation may be considered as a continuum limit to a set of 
equations describing conformational transitions along a generalized coordinate 
[17, 18]. Here I ascribe to Eq. (8) the original physical meaning, litera!ly treating 
the gating particle as some charged part of the protein which moves in a potential 
field. 

The  e x t e n d e d  electrodiffusion model  The electrodiffusion model was cre- 
ated to describe the gating of voltage-dependent sodium channels in the Ranvier 
node of the frog [16]. However, the model is not able to correctly describe, 
within a broad interval of membrane potentials, the sodium conductance activa- 
tion data obtained on squid giant axons. Namely, when the membrane potential 
is changed, the fraction of channels open obtained from Eq.(9) fails to properly 
follow the respective changes in both the slope of sodium conductance and the 
lag in the turn-on of the conductance [22]. 

On the other hand, the electrodiffusion model yields a reasonable description 
of the "steady-state" data. The question arises whether the basic physical idea 
of the model is not adequate to describe the kinetics of the investigated process 
or the sodium conductance activation is more complex. 

In its original formulation, the model contains only one variable "responsible" 
for the kinetics of sodium conductance - the friction coefficient f (whereas the 
remaining variables describe equilibrium properties of the system, like the F-V 
or the Q-V relationship). However, there is some evidence that the step between 
the displacement of the gating particle and the final opening of the respective 
Channel is not instantaneous [21]. To allow for this hypothesis within the model, 
I have replaced Eq. (9) by: 

fop = P ( x , t -  ~')dx (11) 
t h  

where 7- is the mean duration of the step. 
Though the step between gating charge displacement and channel opening 

is considered to be "electrically silent" [21], I assumed that the variable v may 
depend on voltage. This assumption is justified if the (hypothetical) electric 
current due to the step is considerably smaller than the gating current. Such 
a possibility cannot be excluded [10]. 

Finally, I allowed also the friction coefficient f to depend on voltage. Since 
at membrane potential of l0 mV the electric field strength within the membrane 
is of order 106 V/m, such a behavior of the coefficient seems to be not only 
possible, but also expected. 

With the above modifications, the electrodiffusion model was able to. quite 
successfully describe the whole family of macroscopic sodium conductances mea- 
sured on squid giant axons in response to depolarizations ranging from -40 to 40 
mV [22]. Moreover, it predicted many important features of gating current. Fig. 
6 presents the time course of the predicted gating current obtained for three dif- 
ferent depolarizations. In very good agreement with the measurements of Forster 
and Greeff mentioned above, there is a spike at the beginning of the curve. Again 
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Fig. 6. Gating currents evaluated from Eq.(10) for : 40 mV (a), 20 mV (b) and -10 
mV (c). Holding potential -100 mV. 

in accordance with the measurements, for depolarizations above 0 mV the spike 
is followed by a shoulder whose "amplitude" decreases with decreasing depolar- 
ization. I therefore dare to say that the time course of gating current measured 
on squid giant axons is of (electro)diffusional character. The agreement with the 
experiment is not only qualitative. Though, when presented as a sum of decay- 
ing exponentials, the predicted gating current has two fast decaying components, 
their sum approximates very good the single component found experimentally 
[22] (because of the shoulder, the predicted gating current may be approximated 
in this way only for low membrane potentials). The extended model also predicts 
quite reasonably the Q-V relationship. 
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1 The SchrSdinger problem: microscopic dynamics from 
the input-output statistics 

We invert the well developed strategy of studying dynamics in terms of probabil- 
ity densities and investigate the problem of the most likely microscopic propaga- 
tion scenario, which is consistent with the given a priori (possibly phenomeno- 
logical) input-output statistics data for the process taking place in a finite time 
interval. A subclass of solutions includes the familiar Smoluchowski diffusions. 

It is clear that a stochastic process is any conceivable evolution which we can 
analyze in terms of probability. We shall be particularly interested in situations 
when the involved probability measures give rise to densities (probability distri- 
butions which are absolutely continuous with respect to the Lebesgue measure). 
In many branches of physics ranging from deterministic (the folk lore phrase 
"studying chaos with densities" pertains to the currently fashionable topic) to 
quantum problems, densities of probability measures do naturally arise. The 
quantum issue should receive a particular attention in connection with the Born 
statistical postulate, which implies that quantum theory deals with probability 
densities. However, quite generally the stochastic analysis is disregarded against 
the pragmatic viewpoint of deducing as many experimentally verifiable or rather 
falsifiable data as possible, even at the price of manipulating with the ill defined 
or not defined at all (safe bypassing of rather fundamental difficulties) proba- 
bilistic framework. 

The main idea behind what we call the SchrSdinger problem is an attempt 
to get an insight (in fact through modeling) into an unknown in detail physical 
process with a finite time of duration, in terms of random motions consistent 
with the prescribed input - output statistics i.e. the boundary distributions for 
repeatable single particle (sample) procedures. In less specific lore, we can sim- 
ply look for a stochastic evolution (diffusion of probabilities) which interpolates 
between the boundary probability measures, in particular for the (invariant) 
measure preserving dynamics. 

Given a dynamical law of motion (for a particle as example), in many cases 
one can associate with it (compute or approximate the observed frequency data) 
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a probability distribution and various mean values. In fact, it is well known 
that  inequivalent finite difference random motion problems may give rise to 
the same continuous approximant (e.g. the diffusion equation representation of 
discrete processes). The inverse operation of deducing the detailed (possibly 
individual, microscopic) dynamics, which either implies or is consistent with 
the given probability distribution (and eventually with its own time evolution) 
cannot thus have a unique solution. 

For clarity of discussion, we shall confine our attention to continuous Markov 
processes, whose random variable X(t), t >_ 0 takes values on the real line R 1, 
and in particular can be restricted (constrained) to remain within the interval 
A C R 1, which may be finite or (semi-) infinite but basically an open set. 

In the above input-output statistics context, let us invoke a probabilistic 
problem, originally due to SchrSdinger : given two strictly positive (on an open 
interval) boundary probability distributions po(x),pT(x) for a process with the 
time of duration T >_ O. Can we uniquely identify the stochastic process interpo- 
lating between them? 

Perhaps unexpectedly in the light of our previous comments, the answer is 
known to be affirmative, if we assume the interpolating process to be Markovian. 
In fact, we get here a unique Markovian diffusion, which is specified by the joint 
probability distribution 

rn(A,B) = fA dx/B dym(x,y)  (1) 

f dvm(~, v) = po(~) 

where 

/ dx m(~, v) = pT(V) 

m(=, v) = o,(=, o) k(x, o, y, T) O(v, T) (2) 

and the two unknown (not necessarily Lebesgue integrable) functions e , ( x ,  0), 
O(y,T)  come out as solutions of the same sign of the integral identities (1). 
Provided, we have at our disposal a bounded strictly positive integral kernel 
k(x, s, y, t), 
0 < s < t  < T .  Then: 

e,(x,  t) = ] k(0, v, x, t)O,(u, 0)du (3) 

t "  
O(x, s) = ] k(s, x, y, T)O(y, T)dy 

and the sought for interpolation has a probability distribution p(x, t) = ( 0 . 0 )  
(x, t) , t  E [0, T]. 
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2 Markov diffusions solving the SchrSdinger problem: the 
role of natural boundaries 

To have a definite Markov solution in hands, we must decide what is the most 
appropriate choice for the dynamical semigroup kernel in the above. Apparently 
it is the crucial step in the construction of any explicit random propagation con- 
sistent with the boundary measure data. The reader should be warned that  the 
whole family of Levy processes and their perturbations (in the sense of Kato) is 
here allowed. The conventional Brownian diffusion and the equally conventional 
Poisson jump process are rather specialized examples in this context. 

We wish to discuss diffusive solutions only, and take for granted that  the 
traditional Fokker-Planck equation sets rules of the game for the interpolat- 
ing probability density. Then we look for the corresponding fundamental law 
of random displacements and choose the transition probability density for the 
Markovian diffusion process in the form (the so called h-transformation, invented 
long ago by Doob and Hille is here involved) 

p(y, s, x, t) = k(y, s, x, t) O(x, t) e(y,s) (4) 
with s < t. This transition density is required to come out from the forward 
Kolmogorov equation (e.g. the Fokker-Planck equation ) as its fundamental  so- 
lution (p ~ 6(x - y) as t ~ s). For convenience we simplify the whole problem 
by utilising a diffusion constant D > 0 (this choice narrows slightly the allowed 
framework): 

Otp = D A x p -  V,~(bp) (5) 

p(~, t) = / p(v, s, ~, t) p(y, s) du 

with po(x) = p(x, 0) and the drift b(x,t) given b y :  

b(x, t) = 2 0  -~0-~(x, t) (6) 

In addition we demand that the backward diffusion equation is solved by the 
same transition density (with respect to another pair of variables) 

O~p = - D A y p -  bVyp (7) 

p = p(v ,  ~, ~, t ) ,  ~ <_ t ,  b = b(v, ~) 

It implies that we deal here with a unique diffusion process, whose transition 
density is a common fundamental solution for both the backward and forward 
Kolmogorov equations. 

To understand the r61e of the integral kernel k(y, s, x , t )  in (1)-(7) let us 
assume that O(x, t) is given in the form (drifts are gradient fields as a conse- 
quence): 

O(x, t) = ± exp O(x, t) ~ b(x, t) = 2DVO(x, t) (9) 
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and insert (4) to the Fokker-Planck equation (5). Then, if p(y, s, x, t) is to solve 
(5), the kernel k(y, s, x, t) must be a fundamental solution of the generalised 
diffusion equation: 

0, k = DA~ k - 2--£5~(x, t) k (10) 

k(y ,  s, t )  - +  - y)  as t .t s 

1 .  b 2 
~(x , t )  = 2D[&~ + ~¢~-~ + Vb)] 

and to guarrantee (3), it must display the semigroup composition properties. 
Notice that (4), (9) imply that the backward diffusion equation (7) takes the 

form of the adjoint to (10): 

0, k = - D A y  k + ~D g2(y, s) k (11) 

k = k (y , s , x , t )  

If  the process takes place in-between boundaries at infinity rl = -oo ,  r~ -- 
+oo, the standard restrictions on the auxiliary potential t2 (Rellich class) and 
hence on the drift potential qS(x, t), yield the familiar Feynman-Kac representa- 
tion of the fundamental solution k(y, s ,x , t )  common for (10) and (11): 

/ k ( y , s , x , t ) =  exp[-~-  5 f2(X(u) ,u)du]dp[s,  y l t ,  x] (12) 

which integrates exp[-(1/2D) f~ f2(X(u), u)du] weighting factors with respect to 
the conditional Wiener measure i.e. along all sample paths of the Wiener process 
which connect y with x in time t - s. More elaborate discussion is necessary, if 
at least one of the boundary points is not at infinity. 

Let us notice that the time independence of f2 is granted if either ¢ is indepen- 
dent of time, or depends on time at most linearly. Then the standard expression 
e x p [ - H ( t - s ) ] ( y ,  x) for the kernel k clearly reveals the involved semigroup prop- 
erties, with H = - D A  + (1/2D)Y2(x) being the essentially self adjoint operator 
on its (Hilbert space) domain. 

We shall make one more step narrowing the scope of our discussion by ad- 
mitting diffusions (1)-(7) whose drift fields are time-independent:O,b(x, t) = 0 
for all x. We know that both the free Brownian motion and the Brownian mo- 
tion in a field of force in the Smoluchowski approximation, belong to this class 
of processes. We know also that the boundary value problems for the Smoln- 
chowski equation have a profound physical significance, albeit the attention paid 
to various cases is definitely unbalanced in the literature. It is then interesting 
to observe that the situation we encounter in connection with (1)-(7) is very 
specific from the point of view of Feller's classification of one-dimensional diffu- 
sions encompassing effects of the boundary data. Our case is precisely the Feller 
diffusion respecting (confined between) the natural boundaries. An equivalent 
statement is that boundary points rl,  r2 are inaccessible barriers for the process 
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i.e. there is no positive probability that any of them can be reached from the 
interior of (rl ,  r~) within a finite time for all X(0) = x C (rl ,  r2). 

In the mathematical  literature a clear distinction is made between the back- 
ward and forward Kolmogorov equations. The backward one defines the transi- 
tion density of the process, while the forward (Fokker-Planck) one determines the 
probability distribution (density) of diffusion. With a given backward equation 
one can usually associate the whole family of forward (Fokker-Planek) equations, 
whose explicit form reflects the particular choice of boundary data. This funda- 
mental  distinction seemingly evaporates in our previous discussion (1)-(11), but  
it is by no means incidental. In fact, according to Feller: in order that  there exists 
one and only one (homogeneous ; p(y, s, x, t) = p(t - s; y, x)) process satisfying 
-Otu = DAu+b~Tu in a finite or infinite interval r l  < x < r 2 it is necessary and 
sufficient that  both boundaries are inaccessible (the probability to reach either 
of them within a finite time interval must be zero). A general feature of the 
inaccessible boundary problems is that the density of diffusion vanishes at the 
boundaries:p(rl)  = 0 = p(r2). 

The standard (unres t r ic ted)  Brownian motion on R 1 is the most obvious 
example of diffusion with natural boundaries. It is not quite trival to construct 
explicit examples, if one of the boundaries is not at infinity. The classic example 
of diffusion on the half-line with natural boundaries at 0 and 4-oo is provided 
by the so called Bessel process. As mentioned before, diffusions with inaccessible 
barriers might have drifts which are unbounded on (rl ,  r2). Hence, our discussion 
definitely falls into the framework of diffusion processes with singular drift fields, 
which is not covered by standard monographs on stochastic processes. 

We skip the standard details concerning the probability space, filtration and 
the process adapted to this filtration and notice that a continuous random pro- 
cess X ( t ) , t  E [0, T] with a probability measure P is called a process of the 
diffusion type if its drift b(x) obeys: 

// P[ I b(X(t))l dt < co] = 1 (13) 

and, given the standard Wiener process (Brownian motion) W(t), the integral 
identity (D constant and positive) 

f X(t) = b(X(s)) ds + x / ~ W ( t )  (14) 

holds true P-almost surely (except possibly on sets of P-measure zero). It means 

that  W(t) -= (1/x/-f-D[X(t) - fo b(X(s))ds] is a standard Wiener process with 
respect to the probability measure P of the process X(t). 

For diffusions with natural boundaries, we remain within the regularity in- 
terval of b(X(t)) for all (finite) times, and (13) apparently is valid. Therefore, 
the standard rules of the stochastic It5 calculus can be adopted to relate the 
Fokker-Planek equation (7) with the natural boundaries to the diffusion process 
X(t), which "admits the stochastic differential" 

dX(t) = b(X(t)) dt + ~ d W ( t )  (15) 
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x ( o )  = xo, t e [o, 71 

for all (finite) times. The weak (in view of assigning the density po(x) to the 
random variable X(0)) solution of (15) is thus well defined. 

For stochastic differential equations of the form (15), the explicit Wiener noise 
input, because of (9) implies that irrespective of whether natural boundaries are 
at infinity or not, the Cameron-Martin-Girsanov method of measure substitu- 
tions which parallel transformations of drifts, is applicable. Even though the 
drifts are generally unbounded on (rl, r~) and the original theory is essentially 
based on the boundedness demand. It is basically due to the fact that  the prob- 
abilistic Cameron-Martin formula relating the probability measure Px of X(t )  
with the Wiener measure Pw (strictly speaking it is the Radon-Nikodym deriva: 
tive of one measure with respect to another) reduces to the familiar Feynman-Kac 
formula (with the multiplicative normalisation). The problem of the existence of 
the Radon-Nikodym derivative (and this of  the absolute continuity of Px with 
respect to Pw, which implies that sets of Pw-measure zero are of Px-measure 
zero as well) is then replaced by the standard fun'ctional analytic problem of 
representing the semigroup operator kernel via the Feynman-Kac integral with 
respect to the conditional Wiener measure. 

The Feynman-Kac formula is casually viewed to encompass the unrestricted 
(the whole of R '~ ) motions, however it is known to be localizable, and its validity 
extends also to finite and semi-infinite subsets of R 1 (Rnmore generally) as 
demonstrated in the context of the statistical mechanics of continuous quantum 
systems. More specifically, it refers to the Dirichlet boundary conditions for self- 
adjoint Hamiltonians, which ensure their essential self-adjointness (to yield the 
Trotter formula ). 

Let us emphasize the importance of (15), and of the It5 differential formula 
induced by (15) for smooth functions of the random variable X(t) .  Its first 
consequence is that given p(y, s, x, t), for any smooth function of the random 
variable the forward time derivative in the conditonal mean can be introduced 
(we bypass in this way the inherent non-differentiability of sample paths of the 
process) 

limA,10 N [ p(x, t, y, t + ZXO/(y, t + /Xt)dy - / ( x ,  t)] = (D+/(X(O, t) (16) 

= (0~ + bY + DZX)/(X(O, t) 

(Z)+(X)(t) = b(x,O X(O = x 

so that  the second forward derivative associates with our diffusion the local field 
of accelerations: 

(D~X)( t )  = (D+b)(X(t), t) = (Orb + bVb + Dz~b)(X(t), t) = VY2(X(t), t )  (17) 

with the (auxiliary potential/2(x, t) introduced before in the formula (10). Since 
we have given p(x,t) for all t E [0, T], the notion of the backward transition 
density p.(y, s, x, t) can be introduced as well 

p(x, t)p, (y, s, x, t) = p(y, s, x, t)p(y, s) (18) 

254 



The SchrSdinger Problem 

which allows to define the backward derivative of the process in the conditional 
mean (it is quite illuminating to appply this discussion in case of the most 
traditional Brownian motion) 

1 
- / p. (y, t - At, x, t)ydy] = (D_ X)(t) = b. (X(t), t) limat~o - ~  [x 

= [b - 2DVZnp](X(t ) ,  t) (19) 

(D_f)(X(t) ,  t) = (Or + b,V - DA)f(X( t ) ,  t) 

Apparently, the validity of (17) extends to (D~X)(t) as well, and there holds 

(D2+X)(t) = (D2_X)(t) = Otv + vVv + VQ = V(2 (20) 

v(x,  t) = 1 1 -~(b.+b.)(x,t), u(x,t) = (b -  b.)(x,t) = D~Jlnp(z,t) 

/kpl/2 
Q(x,t) = 2D 2 pl/2 

Clearly, if b and p are time-independent, then (20) reduces to the identity 

v W  = V(S~ - Q) (21) 

while in case of constant (or vanishing) current velocity v, the acceleration for- 
mula (21) reduces to 

0 = v ( ~  - Q) (22) 

which establishes a very restrictive relationship between the auxiliary poten- 
tial f2(x) (and hence the drift b(x)) and the probability distribution p(x) o f  
the stationary diffusion. The pertinent random motions have their place in the 
mathematically oriented literature. 

Let us notice that (20) allows to transform the Fokker-Planck equation (7) 
into the familiar continuity equation, so that the diffusion process X(t) admits a 
recasting in terms of the manifestly hydrodynamical local conservation laws (we 
adopt here the kinetic theory lore) 

Otp = -V(pv)  (23) 

O~v + v v v  = v ( ~  - Q) 

p0(=) = p(=,0) ,  v0(=) = v(=,0) 

which form a closed (in fact, Cauchy) nonlinearly coupled system of differential 
equations, strictly equivalent to the previous (7), (17). 

In view of the natural boundaries (where the density p(x,t) vanishes), the 
diffusion respects a specific ("Euclidean looking") version of the Ehrenfest the- 
orem: 

E[VQ] = 0 ~ (24) 

d2 
-d-~E[X(t)] : E[v(X(t), t)] : E[(Otv + vVv)(X(t,  t)] : E[Vf2(X(t), t)] 
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Notice that the auxiliary potential of the form ~2 = 2Q-V  where V is any Rellich 
class representative, defines drifts of Nelson's diffusions for which E[~YQ] = 0 
E[~TY2] = -E[~YV] and the "standard looking" form of the second Newton law 
in the mean arises. 

At this point it seems instructive to comment on the essentially hydrody- 
namical features (compressible fluid/gas case)of the problem (23), where the 
"pressure" term ~TQ might look annoying from the traditional kinetic theory 
perspective. Although (23) has a conspicuous Euler form, one should notice that  
if the starting point of our discussion would be a typical Smoluchowski diffu- 
sion (7), (15) whose drift is given by the Stokes formula (i.e. is proportional to 
the external force F = -~TV acting on diffusing molecules), then its external 
force factor is precisely the one retained from the original Kramers phase-space 
formulation of the high friction affected random motion. In the Euler descrip- 
tion of fluids and gases, the very same force which is present in the Kramers 
(or Boltzmann in the traditional discussion) equation, should reappear on the 
right-hand-side of the local conservation law (momentum balance formula) (23). 
Except for the harmonic oscillator example, in view of (10) it is generally not 
the case in application to diffusion processes. As it appears, the validity of the 
stochastic differential representation (15) of the diffusion (5) implies the validity 
of the hydrodynamical representation (23) of the process. It in turn gives a dis- 
tinguished status to the auxiliary potential ~2(x, t) of (10)-(12). We encounter 
here a fundamental problem of what is to be interpreted by a physicist (ob- 
server) as the external force field manifestation in the diffusion process. Should 
it be dictated by the drift form following Smoluchowski and Kramers, or rather 
by V~2 entering the evident (albeit "Euclidean looking") second Newton law, 
respected by the diffusion ? 

In the standard derivations of the Smoluchowski equation, the deterministic 
part (force and friction terms) of the Langevin equation is postulated. What  
however, if the experimental data pertain to the local conservation laws like 
(23), and there is no direct (experimental) access to the microscopic dynamics ? 

If the field of accelerations ~752 is taken as the primary defining characteristics 
of diffusion we deal with, then we face the problem of deducing all drifts, and 
hence diffusions, which give rise to the same acceleration field, and thus form a 
class of dynamically equivalent diffusions. 

Let us analyze the second consequence of the unattainability of the bound- 
aries, which via (13) gives rise to (15). On the same footing as in case of (13), 
we have satisfied another probabilistic identity: 

// P[ b2(X(t))dt < oo] = 1 (25) 

For a diffusion X(t) with the differential (15), we know that  (25) is a sufficient 
and necessary condition for the absolute continuity of the measure P = Px with 
respect to the Wiener measure Pw. Since, for any (Borel) set A, Pw(A) = 0 
implies Px(A) = 0, the Radon-Nikodym theorem applies and densities of these 
measures can be related. It is worthwhile to mention the demonstration due to 
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Fukushima that  the mutual absolute continuity (the previous implication can be 
reversed) holds true for most measures we are interested in. 

In the notation (12), the conditional Wiener measure dp[s, y [ t, z] gives rise 
to the familiar heat kernel, if we set (2 = 0 identically. It in turn induces the 
Wiener measure Pw of the set of all sample paths, which originate from y at 
time s and terminate (can be located) in the Borel set A after time t - s: 

Pw[Al= /AdX f dp[s, ylt, x]= (26) 

where, for simplicity of notations, the (y, t - s) labels are omitted and f dr[s, y [ 
t, x]stands for the standard path integral expression for the heat kernel. 

Having defined an It6 diffusion Z(t),  (5), (15) with the natural boundaries, 
we are interested in the analogous (with respect to (26)) path measure Px 

Px[A] = /Ad  / dpx[s, y l t, x] = /A@X (27) 

The absolute continuity Px << Pw implies the existence of the strictly positive 
Radon-Nikodym density, which we give in the Cameron-Martin-Girsanov form 

dp [s, y I t, x] = exp [ b(X(u))dX(u) -- -~ [b(X(u))]2du] (28) 

Notice that  the standard normMisation appears, if we set D = 1/2 which implies 
1 DA" --. ~A in the Fokker-Planck equation. 

On account of our demand (9) and the It5 formula for O(X(t), t) we have 

2--D b(X(t))dX(t) = ~)(X(t), t) - ~(X(s),  s) - du [at~ + Vb](X(u), u) 

(29) 
so that,  apparently 

d#x~s,Y[ I t,x] = exp[4)(X(t),t) -O(X(s) , s )]  exp [ -~-~  f2(X(u),u)du] 
d# 

(30) 
with $2 = 2DOtq~ + DVb + (1/2)b ~ introduced before in (10), by means of the 
substitution of (4) in the Fokker-Planck equation. 

In case of natural boundaries at infinity, the connection with the Feynman- 
Kac formula (12) is obvious, and we have 

/ A d # X ' f A f  d#x[¢ Px[A]---- - -~ -a#= dx - -  y l t ,  x]d#[s,y[t,x] 
d# Lo' (31) 

where the second integral refers to the path integration of the Radon-Nikodym 
density with respect to the conditional Wiener measure. 

In the context of (31) and (12) we can safely assert that  the pertinent pro- 
cesses (X(t) and W(t)) have coinciding sets of sample paths. The stochastic 
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process "realizes" them merely (via sampling) with a probability distribution 
(frequency) different from this for the Wiener process W(t). 

The situation drastically changes, if we wish to exploit the "likelihood ratio" 
formulas (28), (30) for diffusions confined between the unattainable (natural) 
boundaries, at least one of which is not at infinity. In view of the absolute 
continuity of Px with respect to Pw, we must be able to select a subset of 
Wiener paths which coincide with these admitted by the process X(t), except 
on sets of measure zero (both with respect to Px and Pw). 

3 B r o w n i a n  m o t i o n  a n d  S m o l u c h o w s k i  d i f f u s i o n s  

A mathematical idealisation of the individual Brownian particle dynamics, in 
case of the free evolution in the high friction regime, is provided by the con- 
figuration space (Wiener) projection of the phase space (Ornstein-Uhlenbeck) 
process. One deals then with the stochastic differential equation 

dX(t) = x / ~ d W ( t )  (32) 

x ( 0 )  = x0 R 3, t [0, T], D > 0 

which is a symbolic expression representing an ensemble of possible instanta- 
neous values (sample locations in space), generated by the random noise W(t) 
according to a definite statistical law. Eq. (32) is known (via the stochastic It6 
calculus) to imply the Kolmogorov equation for the transition probability density 
(heat kernel here) i.e. a fundamental law of random displacements of the process, 
which gives rise to the Fokker-Planck (heat) equation for the time developement 
of the probability distribution of diffusing particles 

•tP :- DAp (33) 

p(x, o) = po(x) 

Then, p(x, t) is the probability distribution of the random variable X(t), given 
the distribution p0(x) of its initial values X(0) in R 3. 

By introducing the (irrotational, rotv = 0) local velocity field 

v = - D m V P ~ o t p  = -V(pv)  (34) 
P 

for all conceivable choices of the smooth function po(x) the heat equation, if 
combined with the assumption (34), inevitably gives rise to the local conservation 
law (the momentum balance equation in the kinetic theory lore) 

Otv + (vV)v = -1--VQ (35) 
m 

Apl/2 
Q = 2roD2 pl/2 
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vo = - D Vp0 
P0 

where m stands for the hitherto absent (albeit included in the definition of the 
diffusion constant D via the fluctuation-dissipation theorem) mass parameter 
of diffusing particles, while the potential Q is recognized to have the standard 
functional form of the familiar de Broglie-Bohm "quantum potential", except 
for the opposite sign. 

In case of an arbitrary non-symmetric distribution po(x) we have fulfilled the 
following property, which is maintained in the course of the diffusion process 
(X(t) e -n3): 

1 3 
l oi O p ~ OJ P (36) 

Pij = D2 POiOj In p 

where V = (01,02,03) and i , j ,= 1,2,3. Apparently, Pij = 5ijD2pAlnp in the 
totally isotropic case. The unconventional "pressure" term ( - ~ V Q )  in (35) is 
a distinctive characteristic of all diffusions derivable (via conditioning as exam- 
ple) from the Brownian motion proper and is a collective, statistical ensemble 
measure of momentum transfer per unit of time and per unit of volume: away 
( - V Q  corresponds to the conventional Brownian propagation with the obvious 
tendency of a particle to leave the area of the higher concentration) or towards 
(+VQ) the infinitesimal surrounding of the given spatial location x E R a at time 
t, in the very same rate. 

The conventional Brownian dynamics is a very special solution of the general 
Cauchy problem composed of the mass conservation law (33) and the momentum 
balance equation (35) with the initial data p0(x), vo(x) in principle unrelated, in 
contrast to the assumption (34). Then, we arrive at the rich family of Markovian 
diffusions, all of which are the descendants of the Brownian motion, the Brownian 
motion itself included. 

To be more specific, let us consider the boundary probability distributions 
po(x) = p(x, 0), pT(X) = p(x, T) for a stochastic diffusion process in R 3, confined 
to the time interval [0, T] 9 t. We realise that the dynamical semigroup operator 
exp(tDA) provides us with the probabilistic semigroup transition mechanism, in 
the sense that  the strictly positive semigroup (heat in our case) kernel is given: 

h(y,O,z,t) = (47rDt) -1/2 exp[ ( x - y ) 2  4--D~ ] = [exp(tDA)](y, x) (37) 

Following SchrSdinger, we ask for the joint probability distribution re(x, y) = 
O. (x, O) h(x, O, y, T) O(y, T) whose marginals f dx m(x, y) = PT (Y), f dy m(x, y) 
= po(x) coincide with the previously prescribed boundary data for the random 
propagation in the interval [0, T]. It is clear, that for arbitrarily chosen (not 
necessarily disjoint ) areas A and B in R 3, the probability to find in B a particle 
which originated from A at time 0 and was subject to the random (Brownian, 
e.g. Wiener) perturbations in the whole run of duration T, reads re(A, B) = 
L dx f .  y). 
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With the data O,(x) and OT(X) we can construct respectively the forward 
and backward diffusive propagation by means of the kernel h(y, O, x, t): 

O,O, = D AO, (38) 

&O = - D A O  

o,(x, o ) =  O,o(Et), O(Et, T) = OT(Et) , t ~ [O,T] 

where 

= J h(y, 0, Et, t) O,0(y) dy (39) 0,(Et, t) 

O(Et, t) = f h(Et, t, y, T) 0T (y) dy 

0 < t < T  

The local conservation laws (33), and (35) are satisfied by: 

p(x, t) : (00 , ) (x , t )  (40) 

v(~, t) : D v  tn ~(Et, t) 

Et ~ R 3 , t ~ [0, T] 

A complete statistical information about the most likely way the individual parti- 
cles propagate, is provided by the transition density p(y, s, x, t) = n(y, . . . .  s, x, ~ ) 8(y,,ie(='t) 
which solves the Kolmogorov (Fokker-Planck) equation associated with the (in- 
dividual particle motion recipe) stochastic differential equation 

dX( t )  = b(X( t ) , t )d t  + x / - ~ d W ( t )  (41) 

b(Et, t) = (u + v)(Et, t) 

u(Et, t) = D Vp 
P 

Notice that the standard Brownian motion comes here in a trivial way by sub- 
stituting 0, = p(Et, t), 0 = 1 for all times t E [0, T]. 

We can still have a more detailed insight into the standard Brownian dynam- 
ics. Let us consider the initial probability distribution of the random variable 
X(0) of the Wiener (Brownian in the high friction regime) process in the form 

P0(Et) = (7r0/2) -1/2 exp[-- EtA] (42) 
O/2 

Then its statistical evolution is given by the familiar heat kernel 

x 2 
p(y, s, x, t) = [47rD(t - s)] -1/2 e x p [ -  4D(t  - s) ] (43) 

Et2 
p(x, t) = [~r(O/2 + 4Dt)] -1/~ exp[- O/2 + 4Dt ] 

where s < t. 

260 



The SchrSdinger Problem 

Let us notice that  since the density distribution is now defined for all times 
t > s we can introduce a convenient device allowing to reproduce a statistical 
past of the (irreversible on physical grounds, but admitting this specific inversion 
mathematically) 

p(y , s )  (44) p,(y ,  s, x, t) = p(y, s, T) 

with the properties (set s = t - At) 

p , ( y , s , z , t ) p ( x , t ) d x  = p (y , s )  s <_ t (45) 

a s + 4Ds  4Dx  
y p . ( y , s , x , t ) d y = x  c ~ + 4 D  t - x  a ~ + 4 D t A t = x  - b,(~c,t)/kt 

where b.(x ,  t) = - 2 D V p ( x ,  t ) lp (x ,  t) and quite trivially b(x, t) = 0. Notice fur- 
thermore that  by defining v (x , t )  = 1 ~b,(x,  t), as a consequence of the heat equa- 
tion we have satisfied (pv)(x ,  t) = f p(y, s, x, t )po(y)vo(y)dy  and equations (38). 

Our previous discussion was entirely devoted to the free evolution, and it is 
quite natural to address the issue of the effects of external force fields on the 
random propagation. If to accept the high friction regime, like in case of (33), 
we should consider the Brownian motion in a field of force, in the Smoluchowski 
approximation. 

The Fokker-Planck equation governing the time developement of the spatial 
probability distribution in case of the phase space noise with high friction, in 
the Smoluchowski form reads 

Otp = D A p  - V(bp) (46) 

1 F(x) ,  p0(x) = p(x, 0) b(x,t) = 

where fl is the friction constant and the external force we assume to be conser- 
vative 

F(~) = - W ( x )  (47) 

It is well known that the substitution 

p(x, t) = 0, (=, t) exp [ -  ~(=)] (48) 
2Dfl ~ 

converts the Fokker-Planck equation into the generalised diffusion equation for 
e , (x , t )  

ate. = D Ae.  V(x) 0, (49) 
2roD 

where (the mass m was here introduced pe r  force, but with a very concrete 
purpose of embedding our discussion in the formalism of the "Euclidean quantum 
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mechanics", the name coined by J. C. Zambrini for a natural extension of the 
standard nonequilibrium statistical physics) 

V(x) = ' ~ F ~  -ff(~-~ + D V F )  (50) 

Since F 2, D,/3 are positive, a sufficient condition for the auxiliary potential V(x) 
to be bounded from below (its continuity is taken for granted) is that  the source 
t e rmg(x)  in the familiar Poisson equation 

V F  = - A ¢  = g (51) 

is bounded from below: g(x) > -c ,  c > O, c is finite. Under this boundedness 
condition, we know that the equation (49) defines the fundamental semigroup 
transition mechanism underlying the Smoluchowski diffusion. Indeed, by (49) we 
have in hands the well defined semigroup operator e x p [ - t ( - D A  + V/2mD)], 
whose integral kernel is a strictly positive solution of (49) with the initial con- 
dition limt--,0 h(y, O, x, t) = 5(y - x). 

The kernel is defined by the Feynman-Kac formula (in terms of the condi- 
tional Wiener measure, which sets an obvious link with the Brownian propaga- 
tion). It is immediate that 

O,o(x) = po(x) exP~2Dfl~ (52) 

t 
0,(x, t) = J h(v, 0, x, t)0,(y, O)dv 

while, apparently 

~(~) f O(x,t) = exp[-  2--D~ ] = h(x, t ,y ,T)OT(y)dy = OT(x) (53) 

for all t E [0, T]. Indeed 0(x, t), (53) solves 

V 
OtO = - DAO + ~mD 0 (54) 

where OtO = 0 and 

. (v~,) ~ A ¢ .  e _  v e (55) 
D A 0  = [ 4-b--~- ~ ] 2roD 

as should be. Since the deterministic evolution governed by the Smoluchowski 
equation gives rise to a definite terminal (in the interval [0, 7"]) outcome pT(x) 
given p0(x), a straightforward inspection demonstrates that  the Schrhdinger sys- 
tem is solved by 0.0(x) and OT(x) with the kernel h ( V ; y , s , x , t ) .  As a con- 
sequence, we have completely specified the unique Markov-Bernstein diffusion 
interpolating between P0 (x) and PT (X), which is identical with the Smoluchowski 
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diffusion itself. We know here the transition probability density (e.g. the law of 
random displacements modified by the presence of external force fields) 

p(y, ~, :~, t) = h(y, ~, x, t) 0(:~, t) 
o(y,s) (56) 

which is responsible for the most likely particle propagation scenario. We have 
also automatically satisfied the local conservation laws 

o , v  = - v(p~) (57) 

a , v  + (vv)v = l v ( v  - Q) 
m 

p(x, 0) = p0(~), v(~, 0) = v0(x) 

where p(x, t), v(x, t) are defined by the formula (40). Notice that in the detailed 
derivation, the above momentum balance equation does not appear directly, but 
in the indirect way by taking the gradient of the much weaker (Hamilton-Jacobi) 
identity 

V - q = 2roD[OrS + D(VS) 2] (58) 

s(~, t) = ~ In o--: 

In our case, apparently 

q~ - lnp) v(x, t) = D V ( - - ~  = - ~ w -  DY~ ,., ( 8 9 )  

1 
O~p v[~(v¢)p] + D~p 

to be compared with the Smoluchowski equation. 
The above discussion admits various generalisations. As example, by choos- 

ing a definite (reference) Smoluchowski force potential and then the auxiliary 
(induced) one V, we have fixed the strictly positive kernel h(V; y, s, x, t). By 
playing with different choices of the boundary data P0, PT (unrelated to the 
initially considered) and seeking solution of the Schrhdinger system, we can gen- 
erate a rich class of the (conditional) random motions, all of which are governed 
by the local conservation laws with the potential V. However, their forward 
drifts b(x, t) would have the functional form completely divorced from the sim- 
ple Smoluchowski expression. 

We can as well start from the general Cauchy problem with the completely 
arbitrary V (except for being continuous and bounded from below). Then, the 
corresponding Smoluchowski diffusion can be reproduced only if the potential 
allows to decouple from the defining identity, the force field F. 
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4 Q u a n t u m  m e c h a n i c a l  g a m e s :  s c h r S d i n g e r  w a v e  

m e c h a n i c s  a s  t h e  t h e o r y  o f  m a r k o v  d i f f u s i o n  p r o c e s s e s  

Now, we shall analyze some consequences of the primordial for quantum the- 
ory, albeit frequently underestimated statistical postulate due to Max Born: the 
identification of the squared modulus of the SchrSdinger wave function with the 
probability density ("of something if anything", but undoubtedly of a certain 
probability measure) is what makes quantum mechanics a part of the theory of 
stochastic processes, and in particular of Markov diffusions. 

4.1 A specific example  of  the  invar iant  p robab i l i t y  measure :  
m e a s u r e  preserv ing  s tochast ic  dynamics  

We indicate at this point certain amusing features of the harmonic attraction. 
Let us consider the Sturm-Liouville problem on L2(R 1) 

¢d2x 2 
- D A ¢  + --~--~-¢ = c¢ (60) 

The substitutions:c~ 4 = w2/4D 2, A = c/w, x = (/c~ give rise to the equivalent 
eigenvalue problem 

1 ~2 
( -~A~  + -~-)0 = -A¢ (61) 

= = ¢ ( x )  

with the well known solution (norma!ised relative to x) 

1 1 
An = n +  ~ +-+ Cn = ( n +  ~)w, n = O, 1 , 2 , . . .  

1/2 ~ 
en(x) = ¢,~(() = ( ~ )  exp[--~-] H,~(~) (62) 

H0 = 1, Ha = 2~, H2 = 2(2~ ~ - 1), Ha = 4~(2~ 2 - 3),.. .  

Except for n = 0 the solutions Cn(~) are not positive definite and change sign 
at nodes. We have 

n = 0, ¢ 0 ( x )  > O, x E ( -oo,+oo)  

n = 1, ¢1(x) > 0, x E (0,+cx)) 

¢1(X) < 0, X C (--OO, 0) 

n = 2, ¢2(x) > 0, x E ( - ~ , - 1 / v ~ )  U (1/x/'2, +co) 

¢2(x) < 0, x E ( - 1 / v ~ ,  ÷l /v/2)  

and so on. It is convenient to continue further considerations with respect to the 
1 rescaled ~ = otx variables, in view of the form - ~ / ~  + 2 = H of the Hamiltonian 

predominantly used in the mathematical physics literature. To proceed in this 
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1 and thus utilize notational  convention it is enough to set x ---* 1̀ and D ~ 
b = V O / O , £ 2 =  1 2 + v b ) , w =   vb+ ½z b 

Although we need O, O, of the same sign, and p(x) to be strictly positive, 
we can first make a formal identification O = O. = ¢~, n - 0, 1,2, ... and notice 
that  

1̀2 1 
n = 0, b0 = - ` 1  ~ B 0 -  

2 2 

1 ~2 3 
,~ = 1,  b~ = ~ - - ` 1  ~ = 

5 - -  

4`1 ,I 2 5 
n=2,b2-2`12 1 ` 1 ~ 2 -  2 2 

Obviously V~2n = 1̀ for all n. Irrespective of the fact that each of bn, n > 0 shows 
singularities, the auxiliary potentials are well defined for all x, and for different 
values of n they acquire an additive renormalisation -An = - ( n  + ½). 

The case of n = 0 is a canonical example of the Feynman-Kae integration, 
and the classic Mehler formula involves the Cameron-Martin-Girsanov density 
as well. 

1 Indeed, the integral kernel  [exp(-Ht)] (y ,  x) = k(y, O, x, t) for H --- - 5 / k  + 
(½x 2 - ½) is known to be given by the formula: 

x2 _ y2 (e-t  k(y, 0, X,~) ---- 71"--1/2(1 -- e--2t) -1/2 exp[ 2 Y-~-- x)2] (63) 

f k(y, o, t)o(y),ty 
where the integrability property 

x2 y2 
f k(y, 0,  ,tlexpI   -]dy = 1 

is simply a statement pertaining to the transition density of the homogeneous dif- 
fusion, which preserves the Gaussian distribution p(x) = (OO,)(x)  = : ~  exp(-`12). 

4.2 T h e  i m a g i n a r y  t i m e  s u b s t i t u t i o n  as a m a p p i n g  b e t w e e n  t w o  
f am i l i e s  o f  d i f fus ion  p r o c e s s e s  

Let us invoke the analytic continuation in time concept, which is a notorious tech- 
nical tool to pass to the so called Euclidean framework whenever any problems 
with the mathematically rigorous processing appear in the context of quantum 
theory. In fact it is also well known that the easiest way to generate explicit exam- 
ples of Markov (actuMly Markov-Bernstein) diffusions is by analytic continuation 
of solutions of the SchrSdinger equation. For V continuous and bounded from 
below, the generator H ~ - 2 m D 2 A  + V is essentially selfadjoint, and then the 
kernel h(x, s, y , t )  = [ e x p [ - ( t -  s)H]](x, y) of the related dynamical semigroup 
is strictly positive, so the previous Markov-Bernstein process considerations do 
follow immediately for time-independent potentials V. On the other hand it is 
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quite traditional to relate this dynamical semigroup evolution to the quantum 
mechanical unitary evolution operator exp(iHt) by the imaginary time substi- 
tution t --+ it. In the most pedestrian and naive interpretation of this fact, one 
might be tempted to invent the concept of "diffusion process in the imaginary 
time". Actually nothing like that is here allowed, and if taken seriously, becomes 
self-contradictory. 

The routine illustration for the imaginary time transformation is provided by 
considering the force-free propagation, where apparently the formal recipe gives 
rise to (one should be aware that to execute a mapping for concrete solutions, 
the proper adjustment of the time interval boundaries is indispensable): 

Then 

to te  = - D A ¢  ~ OtO. = DAO, 

it -~ t (65) 

[ 
¢(x, t) = [ f / 2  exp(iS)](x, t) = J dx'G(x - X t , t )¢(x  I, 0) 

G(x - x', t) = (4~riDt) -1l~ exp[ (x - x') ~ g b 7  ] (66) 

o-:(=, t) = f d 'h(x - o) 

h ( x - x ' , t ) = ( 4 ~ r D t )  H2exp[ (X~D~ ] - x ' )  2 

where the imaginary time substitution recipe 

h ( x -  x ' , i t )  = G ( x -  x ' , t ) ,  h ( x -  x ' , t )  = G ( x -  x ' , - i t )  (67) 

seems to persuasively suggest the previously mentioned "evolution in imaginary 
time" notion, except that one must decide in advance, which of the two consid- 
ered evolutions:the heat or SchrSdinger transport, would deserve the status of 
the "real time diffusion". 

At this point let us recall that given the initial data 

x 2 
¢(X, 0) = (7t"O/2) -1/4 exp (-- ~2~2 ) (68) 

the free SchrSdinger evolution Ore = -DZS¢ implies 

o~ 2 
¢(x,  t) = (--~-)(a 2 + 2iDt) -112 exp [ 

with ( ~ ( D + D _  + D_D+)X( t )  = 0 applies): 

x 2 

2(0/2 + 2iDt)  ] 
(69) 

0/ X2~ 2 

p(=, t) -- I¢(=, 012 -- [~.(0/4 + 4D2t2)]a/2 exp( - 0/4 + 4D2t ~ ) 
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f 
= J ;(y, 0,., t>(y, O)dy (70) 

2D ~rt]2 
p(y ,O,z , t )  = (4~rDt)-l/2 exp[ - ( z -  y -  --~,oj ] 

4Dt 
where P0/, 0 , . ,  t) is the (distorted Brownian) transition probability density for 
Nelson's diffusion derivable from ¢(z,  t). On the other hand we can straightfor- 
wardly pass to 

_ o~  2 x 2 
~ ( x , - i t )  = 0,(x, t) = (-~)t/4(c~2 + 2Dt) -1/2 exp [ -  2(a2 + 2Dr)] (71) 

Let us confine t to the time interval [ -T /2 ,  T/2] with D T  < a s. Then we arrive 
at 

OrÜ, : DAO, 

Ot-O = - D A 0  (72) 

T T 
< t <  2 -  

-0 = (--~-) -- 2Dr) -1/2 exp[ 2(a2 _ 2Dt,  ]) 

where 

_ _  OZ2X 2 
°~2 11/2 e x p [ -  (73) -fi(., t) = (00,)( . ,  t) = [~.(a4 _ 4D2t2) J ~4 _ 4D2t2] 

with the interesting, and certainly unpredictable if to follow the traditional Brow- 
nian intuitions, outcome: 

-fi(,, - T / 2 )  = -fi(x, T/2)  (74) 

However strange the probabilistic evolution appropriate for (74) would seem, it 
does not need an imagination effort, to realize that it refers to a conditional 
Brownian motion (in fact the Brownian bridge with smooth ends) for which the 
acceleration formula D~.X = D2_X = 0 holds true. Here the intermediate prob- 
ability density (73) can be represented as the conditional transition probability 
density formula (identifiable as the Bernstein transition density) 

h(O, - ~ ,  x, t)h(x, t, O, ~) (75) 
-fi(x,t) = P ( x l , t l ; x , t ; x 2 ,  t2) = h ( 0 , _ a , 0 ,  c 0 

.2 
h ( 0 , - a ,  x, t)  = [4rD(t + c~)]-l/~exp( 4D(t + a) ) 

Clearly nothing like the "imaginary time diffusion" is here involved. We have 
rather executed a mapping from one reM time diffusion to another, with the in- 
com2atible dynamical principles (previously introduced microscopic conservation 
laws) at work. Since the Schr5dinger equation plays here the role of the linear 
problem associated (linearisation) with the nonlinear diffusion equations, there 
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are not the diffusions themselves which are related directly by the Wick rotation. 
The link can be established on the auxiliary (for the Nelson diffusion) level of 
description:the corresponding linear problem (SchrSdinger equation which itself 
generates nonlinear diffusions) can be mapped into the linear diffusion prob- 
lem, with all the reservations concerning the proper choice of the time interval 
boundaries. 

4.3 Free  Sch rSd inge r  d y n a m i c s  as t h e  d i f fus ion p r o c e s s  

By defining 

p(y, O, x, t) = (41rDt) -1/2 e x p [ -  (x - y + 2Dry/a2) 2 ] 
4Dr 

we realise that 

p(y, O, x, t)(Tro~2) -1/2 exp(-y2 /o~2)dy = 

X2~ 2 
[-- 3 p(z, t) [~(~4 + 4D2t2)]~/~ exp ~4 + 402t~J  

and 
/p(y,O,x,t)[~(TrOl2)_l[2 ] y2 exp[-- ~--ff]dy = 

2D(a2"~-4 + 4--D-~- 2Dt)x p(x," t) = -b(x,  t)p(x, t) 

where evidently 

(76) 

(77) 

(78) 

v(z, t) = b(x, t) - DVp(x,  t)/p(x, t) (79) 

solves local conservation identities (laws) with V = 0 and via the familiar 
Madelung transcription of the free Schr6dinger dynamics lot ¢(x,  t) = - D A ¢ ( x ,  t) 
wi th  ¢ = e x p ( R  + iS), p = e x p ( 2 n ) ,  v = 2 D V S  the link between the Brownian 
type diffusion and the quantum mechanical evolution is established. 

However, it seems instructive to have a detailed demonstration that the per- 
tinent dynamics is a well defined solution of the SchrSdinger problem as formu- 
lated in Section 1. To simplify considerations we shall rescale the variables so 
that effectively D = 1 appears everywhere. Certainly, we deal with the evolution 
associated with the continuous mapping: 

~2 t2)] (80) po(x) = (27r)- l /2exp[-  ] , p(x,t)  = [2~r ( l+ t2 ) ] - l /2exp[ -2 (  1 + 

We have defined the transition probability density effecting the "quantum job" 
from the initial time instant 0 till any finite time t. However, our diffusion process 
is definitely not homogeneous in time, hence the fundamental trasport mech- 
anism for arbitrary times is very different from what the previously utilized 
formula might suggest. Indeed, let us consider : 

(x - c y )  ~ . 
p(y, s, x, t) = [4Tr(t - s)] -1/2 exp[ at ~)5-'[~UVJ (81) 
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= c(s,4)= [(1 - t )  ~ + 2s]1/~ 
]+s2 

which by setting c(0, t) = 1 - t  reduces to the previously considered p(y, O, x, t) = 
(47rt)_1/2 x - y - y t  2 . • 1 - t  exv[-(  4, ) ]" One can eas,ly calculate the drift ~(~,t) = -]+,9~ 
following the standard stochastic methods and check the validity of both the 
continuity and momentum balance equations. It is however more interesting 
to realize that by taking ¢(x, i) = exp(R + iS) whereR(x, t), S(x,  t) are real 
functions, we can as well introduce the new real functions 0 = exp(R + S), 0. -- 
e x p ( R -  S) such that : 

R(x,  t) = - ln2~-(1 + t 2) 4(1 + t 2) (82) 

x 2 t 1 
S(x , t )  - 4 1+ 42 ~arctan t 

implies 

O(x, t) - - - -  [27r(1 -4- t2)] -1/4 exp( 

O,(~, 4) = [2~(1 + ?)]-~/4exp( 

where, strikingly there holds: 

x ~ 1 - t  1 
4 f_~_~)exp(--~arctan t) 

x 2 l + t  1 
4 1 + t21exp~_~arcta t t) 

(83) 

00 = -Zk0 +/20 (84) 

00. = A0. - ~20. 

~(x ,  t) -- x2 1 -- 2/kPl/2 
2(1 + t2) 2 1 + t 2 pa/2 

Moreover, the function h(y, s, x, t) = p(y, s, x, t) °(u'') is a fundamental solution 0(~,t) 
of the above equations: 

/ h(y, s, x, t)O. (y, s)dy (85) O. (x, t) 

2 
h ( y , s ,  x , t )  [41r(t - 1 /2  1 -4- t z 1/4 1 = - s)] ( 1 + s 2 ) exp -~(arctan t - arctan s) 

( x - c y )  2 y2 1 - s  x 2 1 - t  
exp[- ~(~-_-~ 4 1 + s~ + 4 1 + 4~] 

Although the form of the strictly positive semigroup kernel h(y, s, x, t) does not 
look that  promising,it is possible to check through a direct (albeit a little bit 
involved) computation that the dynamical semigroup implemented identity 

~1-~---[1 - f h(y, s, x , s  + As)dx] = ~2(y, s) (86) lim 
A s---~0 L58 J 

is valid, as expected from the fundamental solution of the generalized diffusion 
equation. All probabilistic features characteristic for solution of the SchrSdinger 
problem were there-by recovered. 
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1 I n t r o d u c t i o n  

The complex forms of nature are too irregular to fit into a traditional geometrical 
setting. On the other hand, they are nicely described in terms of the concepts 
of fraetal geometry [1]. These forms often present statistical scale invariance 
and can be characterized by few parameters like fractal dimensions and scal- 
ing exponents. A self-similar fractal is invariant under an isotropic length scale 
transformation - all the different directions scale in the same way. We can cite 
as examples coastlines [1], percolation clusters [1, 2], colloidal aggregates [3] etc. 
When an object is invariant under a transformation with different length scales 
in different directions it is a self-affine fractal [4]. Recent works have demon- 
strated that  a wide class of processes lead to objects with self-affine properties: 
plots of random walks [1, 2], interfaces in far-from-equilibrium systems [5] and 
interfaces resulting from growth processes [5, 6, 7]. 

In many circumstances the interface f (x )  generated from a smooth surface 
by some stochastic process becomes rough. These interfaces can be characterized 
by its roughness W(f,  L). It is defined as the fluctuation around the average of 
the height f at scale L, namely 

W2(f, L) : {fZ(x)} L - {f(x)} 2 . (1) 

where (...}L means average over x in the scale L. For self-affine interfaces, the 
roughness W(f,  L) scales with the linear size L of the surface by an exponent 
H (W ,'., LH), called the roughness or Hurst exponent. This exponent has been 
received a lot of attention in the last years and has been used to characterize 
different phenomena in many distinct subjects as for example, biology [8] and 
fractures [9]. 

• In this work we consider the connection between generalized roughness and 
fractal dimension for interfaces in dimension d : 2 (profiles) and d : 3 (surfaces). 

* This research was supported in part by Conselho Nacional de Desenvolvimento 
Cientifico e TecnolSgico (CNPq) and in part by Fundaq~o de Amparo ~ Pesquisa 
do Estado de Minas Gerais (Fapernig), Brazilian agencies. 
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The profiles and surfaces f ( x )  are characterized by a fractal dimension D and by 
a roughness or Hurst exponent H.  By fractal dimension we mean the Minkowski- 
Bouligand dimension, box dimension [1] or other equivalent one. Essentially the 
fractal dimension is related to the scaling properties of d-dimensionM volumes 
of a cover for the interface and the tturst exponent measures the scaling of the 
average of a local roughness w(x, c), evaluated in a e -ne ighborhood  of x. The 
rate of convergence to zero of W(f, c) = f w(x, ¢) dx as e goes to zero defines 
the roughness exponent H.  We show that  H is related to the fractal  dimension 
D through H = d -  D. 

We propose a new numerical algorithm for the evaluation of D, based on a 
roughness around the local linear fit. This method is tested on self-affine curves 
with known fractal dimensions: the Weierstrass function and the fractional Brow- 
nian motion. The estimates of D are then compared with the ones obtained f rom 
methods of the literature. 

This work is organized as follows. In the next section we present the math-  
ematical  aspects of the connection between the generalized roughness and the 
Minkowski-Bouligand climension. Both the cases of profiles and surfaces are con- 
sidered. The Weierstrass function and the fractional Brownian motion are briefly 
presented in section 3. In section 4 we define the new numerical algori thm based 
on the generalized roughness for the evaluation of D. The results obtained for the 
two standard profiles of section 3 are also discussed in this section. A summary  
of ours results is presented in the last section. 

2 G e n e r a l i z e d  R o u g h n e s s  a n d  F r a c t a l  D i m e n s i o n  

In this section, we present a proof of the relation D -- d -  H for arbi t rary graphs 
of functions of one (profiles, d = 2) or two (surfaces, d = 3) real variables. 
Although this relation was for long known for exact self-affine fractals [10], and 
can also be derived from scaling arguments for statistical self-affine profiles as 
the fractional Brownian motion [2, 11], there is no rigorous proof, at least at our 
knowledge, that  it works in the general case. We should point out tha t  for the 
general case of statistical fractals, even the notion of fractal dimension can be 
viewed as a first approximation to the microscopic structure, and a mult ifractal  
analysis [2, 5, 6, 12] is necessary. Our proof relays in the fact the fractal  dimension 
as well as the roughness exponent, measures how far a fractal interface is f rom 
any smooth function that  one use to approximate it. 

Throughout  this work the term interface refers to the graph G.t of a function 
f of a real variable x, or two real variables x, y, continuous on its domain of 
definition. To uniformize notation we call the variable x, meaning x or (x, y) de- 
pending on the dimension d we are, so the interface is the graph of f (x ) .  Wi thout  
loss of generality, we fix the domain of definition of f as the interval [0, 1] or the 
square [0, 1] × [0, 1] and call this domain 7~. We are interested in the evaluation 
of the fractal dimension of the graph G/. We shM1 investigate the Minkowski- 
Bouligand dimension [13], which is equivalent to the box dimension[10]. Although 
these definitions of dimension characterize the local fractal properties of profiles, 
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they can differ from the Hausdorff dimension [2, 4, 6, 14]. In this work we do not 
evaluate the Hausdorff dimension. Upper bounds for the Hausdorff dimension of 
graphs of functions, as well as a very nice discussion about fractal dimensions, 
can be found in Falconer [14]. 

Tricot et al.[15] have used the concept of generalized covers in order to 
demonstrate the equivalence of box and Minkowski-Bouligand dimension. They 
have shown that  for covers by suitable geometric figures (satisfying some non- 
distortion relations) the fractal dimension is given by 

D= lira [d lnlU(e)ld] 
~--*o lne j , (2) 

where IU(e)ld is the d-dimensional volume of the union of figures U(e) cover- 
ing the graph G].  Equation (2) gives the same dimension for all generalized 
covers. For example, the figures are balls of radius e centered on ( x , / ( x ) )  in 
the Minkowski-Bouligand cover and d-dimensional cubes in the box-dimension 
evaluation. The numerical algorithms for d = 2 resulting from the Minkowski- 
Bouligand and box dimensions have been analized in Dubuc et al. [16]. The 
estimates obtained for D were poor when these algorithms have been applied in 
profiles with known dimensions. It has been found that the basic problem was 
the "thickness" of the covers. In order to develop better numerical algorithms, 
Dubuc et al.[16] have introduced two alternating ways of evMuation of fractal 
dimension: the horizontal structuring element method and the variation method. 
Both of them are based on the idea of building covers with intervals instead of 
geometrical figures. The first uses horizontal segments and the second vertical 
ones. The idea was extended to n dimensional graphs by Dubuc &~ Tricot [17]. 

For further use, let us present briefly the variation method for d = 2 [15, 16] 
and d = 3 [18]. Since we are interested in fractal graphs, we can assume that  f 
is nowhere or almost nowhere differentiable. The fractal dimension of the graph 
is related to the e-oscillation v(x, e) of the function f .  The e-variation of f in 
the region l) is defined by 

V(e, f )  = ./~, v(x, e) dx (3) 

v ( x , e ) =  sup f ( x ' ) - , i n f  f (x ' )  . (4) 
x '~ndx) x ~n~(x) 

Here R¢(x) is a rectangle of side e centered at x or its intersection with i/) and 
is called an e -  neighborhood of x. The e-oscillation is also equivalent to the 
maximum range of f in R,(x) as defined in [14]. For d = 2, the union of vertical 
segments S(x, ¢) = {x} × [inf~,eRo(~)f(x'), sup~,eRo(~)f(x')] is a cover for G] 
and has, by definition, area equal to the e-variation o f f ,  IH(e)12 = Y(e, f ) .  It can 
be shown [15, 17] that  V(G f) leads to the fractal dimension in any dimension. 
As long as f is not a constant, we have 

lnV(e,f)] 
D = lim d (5) 

e--.0 ~n~ 
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Intuitively this defines the fractal dimension as the scaling exponent of the area 
or volume occupied by the graph G/. Essentially, V(e, f )  measures the difference 
between the area (volume)under  the upper approximation of f at scale ~ and 
the lower approximation of f at the same scale. 

The idea we introduce now, is to define a finer cover in d = 2 by measuring 
a local oscillation of the function f by a local roughness, defined by 

1 / x + e  
w2(x' ~)= -~e ~,x-e [ f ( x ' ) -  (f(x'))e] 2 dx' , (6) 

1 / ~+~  
= (7 )  

Note that (f(x))~ is a local average of the function f .  Actually this local aver- 
age function may be replaced by any smooth interpolating function. It can be 
replaced by, for example, the local RMS straight line in order to have a better  
local fit. A sufficient condition is that 

0 < w(x, c) <_ v(x, c) for all x and all c > 0 . (8) 

We can see that w(x, c) > 0 holds for any smooth fitting if we assume that the 
function f is nowhere differentiable. The condition w(x, c) < v(x, e) means that 
this cover is finer than the one due to the e oscillation and therefore fits the graph 
GI better. For the average of the function (f(z))~ the condition (8) is easily 
verified from equations (4) and (6). Now we demonstrate that  for oscillations 
w(x, e) satisfying (8) we have 

lim In W(f ,  e) _ lim In V(f ,  e) 
c--.0 In c ~--*0 In e ' (9) 

where we have defined the average roughness W(f ,  e) = f :  w(x, c) dx. For every 
fixed ~ > 0, w(x, e) is a continuous strictly positive function of x on the interval 
[0, 1]. Therefore we can find a ~ such that w(x, e) > ~ > 0 for all x. On the 
other hand, v(x, c) is also continuous with regard to e and x on compact sets of 
the plane. Then we can choose d such that v(x, d) <_ ~c for all x. Therefore we 
have 

V(L e') _ W(f ,  ~) <_ r ( f ,  ~) . (10) 

Taking the logarithm, dividing by In(, considering the limit as c ~, e ~ 0 and 
using equation (5) we obtain that the fractal dimension D is given by 

D = 2 - lim In W(f ,  e) (11) 
e--~0 In E 

For self-affine curves we have that W(f ,  c) ~ c H, where H is the tturst exponent, 
implying that  D = 2 - H.  

In higher dimension, the proof is compleatly equivalent, we only need to 
replace x by x, and integrals over [0, 1] by integrals over 79, all the compactness 
arguments still work. Therefore we have 

D = d - lira In W(f ,  c) (12) 
4--.0 In e 
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This equation establishes a formal connection between roughness and fractal 
dimension in all dimensions. For self-affine interfaces we have a relation between 
the fractal dimension and the roughness exponent, namely D = d - H.  

3 T w o  S t a n d a r d  S e l f - A f f i n e  P r o f i l e s  

For further use, let us introduce briefly two standard self-afllne profiles. The first 
one is the real cosine Weierstrass function (WF) fH(x),  defined as 

fH(x) = f i  b -nil [ 1 -  cos(bnx)] , (13) 

where b > 1 and 0 < H < 1. Note that  the WF has a scaling behavior with 
different scaling ratios, since fH(bx) = bill(x). 

The second one is the trace Bs(t)  of the fractional Brownian motion (FBM). 
BH(t) is a single-valued function of one real variable (t) and its increments 
ABH(AT)  = BH(t2) --ZH(tl)  have a Gaussian distribution. The variance of 
this distribution is given by 

(ABe(At)> ~ At 2H , (14) 

with O < H < 1, At ---- It2 -- tll and (...> denotes the ensemble average. There 
are several algorithms to generate the FBM. We use an algorithm described in 
Feder [2], page 174,equation (9.25). In Fig. 1 it is shown some typical traces. 
The FBM is a statistical self-affine object because its scaling properties. If At 
is changed by the factor r, the increments AB must be changed by a different 
factor r H, since 

(AB2H(r At)) ~ r2H ( AB2tl( At)) . (15) 

The values of the fractal dimension depends on the way one measures it [2]. In 
order to obtain the local box dimension we can use a scaling argument. We must 
cover the trace of the FBM and the graph of WF with small boxes. Then it is 
easy to obtain that  D = 2 - H for both the profiles. A detailed evaluation of D 
for the WF and FBM can be found in textbooks [2, 6]. We must also observe 
that  a multivariate WF in the continuum limit is equivalent to the multivariate 
FBM [19]. 

4 N u m e r i c a l  A l g o r i t h m  f o r  t h e  E v a l u a t i o n  o f  D 

It is straightforward to develop numerical algorithms to evaluate the dimension 
D or the roughness exponent by using (11). We will describe the method for 
d = 2 but its extension for d = 3 is simple. Suppose that  we have N + 1 
points f ( ~ )  (n = 0, 1, 2 . . .  N)  of the digitized profile. In this method, called the 
roughness around the RMS straight line (SLR), we consider a e neighborhood of 
each point x = n/N of the digitized profile. First we evaluate the best straight 
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H=0.5 
I n I U l  

I i i i 

Fig. 1. The fractional Brownian motion trace with n = 8 and M = 700 for (a) H = 0.9; 
(b) g = 0.5; and (c) H = 0.1. 

line a , ( n / N )  + bx in this interval, with the coefficients a~ and b~ evaluated by 
the root mean square method. The local roughness is then given by 

n 
+ 

nEE 

Observe that this is equivalent to (6). Finally, we obtain the c dependent rough- 
Dess as  

1 
1 

W(f , e )  - N + 1 ~ w ( x ' c )  . (17) 
x-~O 

This procedure is repeated for several scales e and the fractal dimension D is 
given by the slope of the l n [ ~ ]  x ln(1/e) plot. Due to discreteness, the log-log 
plot does not give an accurate estimate of D for all scales c. We have defined a 
smallest scale co and consider all scales of the form ck = ckc0 (¢k < N),  where 
c > 1 is a constant. Then we evaluate the local slope Di of the graph by taking 
a fixed number of successive points starting at ki. When Di is almost constant 
we have a reliable estimate of D. We consider the most frequent value of Di 
as the best estimate for the fractal dimension. The error bar is estimated by 
considering the values near Di that are significantly frequent. 

In order to test th'e robustness and the efficiency of this algorithm, we evaluate 
the D dimension of mathematical objects with well known fractal dimension. 
The first object is the Weierstrass function (WF), defined in (13). The second 
object is the trace BH(t) of the fractional Brownian motion (FBM), already 
presented in the preceding section. The numerical values of D for the WF are 
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shown in Table 1 . The exact fractal dimension is given in first column; the 
estimates DVAR obtained by using the variation method [16] are showndn the 
second column; the third column shows the results obtained by the traditional 
roughness, i. e., the roughness around the mean height (DMHR); the fourth 
column shows the evaluation of the fractal dimensions obtained by our method 
(DsLR). The error of the last digit is shown between parentheses. 

Table 1. Fractal dimensions D of profiles generated by the Weierstrass function with 
b = 2.1 in the interval [0.60, 0.61]; the studied profiles have been digitized with 20000 
points; D is the exact value and DVAR is the estimate of the variation method; DMHR 
and DSL• are the results obtained from the roughness around the local average height 
and around the local RMS straight line respectively. The error in the last digit is 
indicated between parenthesis. 

D D V A R  DMHR DSLR 
1.9 1.83(1) 1.898(1) 1.901(1) 
1.7 1.655(5) 1.702(2) 1.709(1) 
1.5 1.475(1) 1.500(6) 1.515(1) 
1.3 1.281(1) 1.292(6) 1.319(1) 
1.1 1.096(1) 1.101(3) 1.121(1) 

The results for the fractional Brownian motion are shown in Table 2, which 
is similar to the preceding table. Note that the estimates of the fractal dimension 
are worst than the ones obtained for the WF. 

Table  2. Fractal dimensions D of profiles generated by the fractional Brownian motion 
with n = 8 and M = 700; the studied profiles have 20000 points; D, DVAR, DMHR 
and DSLn are defined as in the preceding table. 

D . D V A R  DMHR DSLR 
1.9 1.80(2) i.88(1) 1.87(1) 
1.7 1.68(2) 1.725(5) 1.715(5) 
1.5 1.52(2) 1.535(5) 1.525(5) 
1.3 1.34(2) 1.36(2) 1.320(5) 
1.1 1.22(4) 1.24(4) 1.105(5) 

The ln[W(f,  e)/c 2] × ln[1/c] plots of the FBM for three values of H are de- 
picted in Fig. 2. Similar plots have obtained for the WF. 

From these plots we evaluate the slope Di of several intervals of scales ¢. 
The Di × i plots for the WF and the FBM are shown in Fig. 3 and in Fig. 4, 
respectively. 

Let us discuss now the results obtained for the WF. We have very good 
straight lines for the three methods in ln[W(f,  e)/e 2] × in[l/e] plots. In fact, 
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J n ( l / ~ )  

Fig. 2. The ln[W(f, ¢)/e 2] x ln(1/¢) plot of the fractional Brownian motion obtained by 
(a) the variation method, (b) the MHR method and (c) the SLR method for H = 0.1 
(+), H = 0.2 (,) and/~ = 0.9 (o). 

the fitting is much more bet ter  than the ones for the FBM. We must  observe, 
however, that  exist some differences between the three methods.  The results of 
the variation method at low H (high roughness) only stabilizes for large scales 
in a value below the expected one. For the other two methods the results are 
almost stable for all scales and in good agreement with the theoretical value of 
D. When the roughness is small (H .-~ 0.9), the variation method is more stable 
and the three methods give good results for the fractal dimension. 

The results obtained by the three methods for the FBM are not so good as 
the ones obtained for the WF. For high roughness, the MHR and SLR methods  
give us a better  estimation of D than the variation one. In the cases that  the 
roughness is small, all the methods are not stable for large scMes, mainly for the 
VAR and MHR methods. For this cases, the straight line roughness method is 
the only one that  gives a reliable estimate of the fractal dimension. 

The above results can be explained as follows. Figure 5 shows the coverings of 
the trace of the FBM with an intermediate value of the parameter  H.  The  scales 
of the plots are the same for the three methods. We can see that  the .covering 
of SLR method is the finest and the one of the variation method is very crude. 
Independent of the test function, the VAR method does not give a good es t imate  
of D for low H because the curve is so rough (see Fig. lc) implying that  the 
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Fig. 3. The graphs of the fractal dimension D, x i of the Weierstrass function for three 
different values of the parameter H. The exact values are represented by solid lines. 
Shown aiso are the estimates obtained by the variation (+), the MIIR (,) and the SLR 
(¢~) methods. 
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Fig. 4. Figure similar to Fig. 3 for the fractional Brownian motion. 
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cover is particularly crude. For the WF with H ~ 0.9 the profile is quite smooth 
and the three methods work well. On the other hand, for the FBM trace in the 
same range of H,  the profile is also quite smooth but has some valleys and hills 
(see Fig. la).  It means that we have a roughness of large scales, which are not 
taken in account by the VAR and MHR methods. 

i 

, 

Fig. 5. Covering of the FBM trace with H = 0.5 by the (a) VAR; (b) MHR; and 
(c) SLR methods. The middle curves represent the traces, the top (bottom) curves 
are obtained by adding (subtracting) the local roughness w(x,c) to the coordinates 
of the traces. For the VAR method the roughness is given by Eq. (4). The traces are 
digitalized with 5,000 points and e = 1,000. 

All results shown here were obtained for a particular set of parameters de- 
scribed in the captions of the tables. However, we have checked the robustness of 
the methods by considering the WF and the FBM with other sets of parameters 
and found similar results. The estimates of D were obtained by visiting each 
point of the 20,000 ones of the digitized profile. Moreover, the results do not 
change when the profiles are digitized with less points. For instance, we have 
studied profiles with 5,000 and 2,000 points and observed a difference only in 
the last significative digit in the case of 2,000 points. 
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5 Summary 

In conclusion, we have shown that the roughness is closely related to the fractal 
dimension (Minkowski-Bouligand or box dimensions) of profiles (d = 2) and 
surfaces (d = 3) nowhere differentiable. In particular, we have demonstrated a 
relation between the fractal dimension and the roughness exponent of self-affine 
fractals, namely D = d - H.  This has Mlowed us to present a new numerical 
~lgorithm for the evaluation of the fractal dimension or the roughness exponent. 
This algorithm, based on generalized roughness, is more robust and reliable 
than the standard ones. We should pointed out that this algorithms is especially 
useful if one wants to observe the roughness over profiles or surfaces which have 
an arbitrary shape. This kind of shape is found, for example, in fractures. Finally, 
let us observe that the numerical algorithms for surfaces (d = 3) are equal to 
the ones for profiles (d = 2), except that we must now evaluate the roughness 
around the best plane in a ~ neighborhood. 
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Abs t rac t :  An extra degree of freedom (the "spin") is added in the well-known 
Diffusion-Limited Aggregation growth model. A physically relevant coupling 
energy between aggregating spins in presence of an external magnetic field is 
defined. This model generates a kinetic growth competition between two kinds 
of entities and leads to a wide variety of kinetic processes and morphologies 
distributed in the "phase diagram" of the two growth parameters (coupling and 
field). Out of the cluster, the motion of the spins is still Brownian. The process 
leads to cluster fractal structures with fractal dimensions varying from 1.684-0.02 
to 1.99 4- 0.01 depending on the coupling parameters. Some physical ideas are 
presented in order to describe the new kinetic processes. Beside geometrical 
properties of the clusters, physical properties were also measured. For finite size 
clusters, a '!transition" in the magnetization occurs at fixed (f~J, flH)c values. 
This "transition" shows that a species can dominate the other in finite clusters. 
Moreover, the fractal dimension of the clusters drastically drops at the same 
critical values. These behaviours are interestingly new and unexpected. 

1 I n t r o d u c t i o n  

Since the last decade, kinetic growth models have received great attention be- 
cause of their universality and the natural processes that they can generate [1]. 
Growth models are studied in many domains of science like gelation and col- 
loids [1], percolation [2], or just crystal growth [3]. The more studied model is 
certainly the "Diffusion-Limited Aggregation" (DLA) model introduced in 1981 
by T. A. Witten and L. M. Sander [4]. It generates aggregation of identical par- 
ticules to a cluster through a Brownian motion. 

DLA provides a basis for understanding a large range of natural pattern for- 
mation phenomena: electrodeposition problems [5], viscous fingering [6], dielec- 
tric breakdown [7], thin film growth [8],.... Although DLA is certainly the most 
studied of the growth models, many questions about kinetic growth remain open. 
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Usually, natural systems are constitued by entities taking different states. 
E.g. copolymers are macromolecules made of two kinds of monomers [9]. Some 
bacterian cells (like salmonella) can have some "on" or "off" gene [10]. It is thus 
of interest to generalize the kinetic growth models in order to study the kinetic of 
a growing competition between physically different entities. Recently, a variant 
of DLA was imagined where geometrically different entities aggregate (particules 
with different sizes) [11]. The model presented here is quite different. 

In statistical physics, a simple way of representing physical entities taking 
a set of values is through a magnetic or a "spin" analogy. Here, we restrict our 
discussion to spins which can take only two states: up and down (or +1 and -1) .  
In previous work, we have introduced the Magnetic Eden Model (MEM) which 
adds an extra degree of freedom (the "spin") to the classical Eden model A [12]. 
The competition between two kinds of entities in an Eden process leads to a wide 
variety of cluster-types morphologies varying from compact to lacunar clusters. 
In the diagram of the growth parameters (see below), the compact structures 
varies also from smooth faceted clusters to rough faceted clusters. 

It is interesting to consider the generalization of DLA in a similar way. Here, 
we propose to introduce an internal degree of freedom (the spin) in DLA. The 
model simulates e.g. electrodeposition of two species of atoms. The geometrical 
(fractal) and the physical properties of the generated patterns are studied. 

2 T h e  m o d e l  

The "Magnetic Diffusion-Limited Aggregation" (MDLA) model is defined by 
the aggregation of spins moving toward a cluster through a brownian motion as 
in DLA. On a two-dimensional square lattice with lattice spacing a, the growth 
rule is illustrated in Fig.1 and defined by the 

following steps: 

(i) On a site of the lattice: a spin is dropped. It is called the "seed" of the growth. 
(ii) A diffusing up or down spin is dropped on a circle of radius rmax+5a centered 
on the seed site (rm~x is the largest distance between a cluster site and the seed 
site). 
(iii) Because we consider only short range interactions, the motion of the diffus- 
ing spin is still Brownian (as DLA) when it moves toward the cluster. During the 
motion, the spin randomly can turn up or down at each step. If the spin moves 
outside a circle of radius 3rmax centered on the seed site, it is removed from the 
process and one goes back to step (ii). If the spin reaches a neighbour site of 
the perimeter, the diffusion is controlled by the local "magnetic" configurations 
and one goes to step 
(iv) Probabilities of jumping to the (four) specified neighbour sites of the perime- 
ter are defined to be proportionnal to exp(-AflE) where A/3E is the local gain 
of the Ising energy between the initial and final state of the cluster before and 
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Fig. 1. Magnetically Controlled Diffusion-Limited Aggregation rule. 

after spin addition. The dimensionless Ising total energy f iE  is defined by 

pE  /32 - / 3 H  y ~  zi 

(i,j) i 

where the first summation occurs on the nearest neighbours only. The first term 
describes a short range interaction (coupling) between nearest neighbour spins. 
The second term defines a dimensionless energy of the orientation of the spins 
in a magnetic field. 

We precise that  the probabilities of the 8 possible configurations for each 
jump are renormMised and one specified configuration among them is choosen 
through a random number generator. If the spin jumps on a perimeter site, 
it sticks immediately on the cluster, is frozen and the next diffusing spin is 
launched: one goes to step (ii). The process is irreversible. However, if the spin 
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jumps toward a neighbouring site of the perimeter, one goes to step (iv). If the 
moving spin jumps toward an other empty site, one goes to step (iii). 
(v) The procedure is repeated for a desired number of particules to be frozen on 
the cluster. 

The MDLA model has two major differences with the Witten and Sander 
model. First, the introduced extra-degree of freedom is original. Notice that 
eventhough J and H are "energies", MDLA is still a purely kinetic growth model 
because the diffusion and growth are driven by the probabilities exp(flJ) and 
exp(ZH). 

This lead to the second difference, on the neighbouring of the perimeter, 
sticking and diffusing probabilities are richer than DLA [13] because 17 possible 
perimeter site configurations are available on the two-dimensionnal square lat- 
tice and distributed among 7 sticking probability levels (noted P1 to PT). The 
configurations and the associate probability levels as function of /3J  and /~H 
are shown in Fig. 2. Equaling the 7 probability levels, we are led to 12 linear 
relations between j3Y and fill ,  i.e. ~J  = 0 and f lH = nflY/2 with n integer 
varying from -5 to 5. (The MEM was determined by 16 linear relations [12].) 
These boundaries determine 24 regions in the plane (flJ, f i l l)  where the growth 
processes on the perimeter differ from each other. Along the vertical axis, the 
spins are decoupled (/3J = 0) and the model generates simply a DLA process. 
The processes and morphologies are symmetrical with respect to the f lH = 0 
axis. In the upper half diagram exhibited in Fig. 3, the regions are labelled AF 
and F for 

flJ < 0 and/?J  > 0 respectively and numbered from 1 to 6 when the field is 
increased. 

3 M o r p h o l o g i e s  a n d  g e o m e t r i c  p r o p e r t i e s  o f  M D L A  

c l u s t e r s  

Fig. 4 exhibits typical clusters of 3000 spins generated in various regions of the 
diagram. In the whole ferromagnetic interaction (F1 to F6) regions of the dia- 
gram, the structure of MDLA clusters is DLA-like but is more diffuse and rather 
less side-branched than the DLA one. In the AF1 region, the same cluster mor- 
phology is observed in Fig.4. In the AF2 region, the dendritic structure is still 
conserved but it results in an important thickening of the branches as shown in 
Fig. 4. In AF3 region, compact structures are generated as shown in Fig. 4. How- 
ever, these clusters are provided with internal lacunes and channels as shown. In 
AF4 to AF6 regions, "Eden Tree"-like structures [14] are generated as shown in 
Fig. 4. The antiferromagnetic order dominates the magnetic field in AF1 to AF3 
regions but in AF4 to AF6 regions, the field is enough to order the majority of 
spins in the up direction. The antiferromagnetic order in a branch of a cluster 
grown in the AF2 region is shown on Fig. 5. 

We have also simulated 80 clusters of 3000 spins at definite (flJ, j3H) param- 
eter values in each region of the diagram. The fractal dimensions are evaluated 
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Fig. 2. Probability of growth (sticking) and configurations in the 2D Magnetically 
Controlled Diffusion-Limited Aggregation. 

by the radius of gyration method. As in Witten and Sander simulations, the 
number of spins which has been used seems to be sufficient to give a good esti- 
mate of Df here also. Fractal dimensions for each region and parameter values 
are given in Table 1. We have found Dr = 1.71-4- 0.01 for decoupled spins. This 
is in good agreement of course with usually reported fractal dimension of DLA 
clusters [4]. 

As mentioned, the growth processes are determined by the probabilities P1 
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Fig .  3. Upper-half  plane of the phase diagram of Magnetically Controlled Diffu- 
sion-Limited Aggregation. 

T a b l e  1. 

region fl J D~ 

DLA = 0 1.71 4- 0.01 

F1 
F2 
F3 
F4 
F5 
F6 

AF1 
AF2 
AF3 
AF4 
AF5 
AF6 

-4 
-4 
-4 
-4 
-4 
-4 

flH 

VH 

1 
3 
5 1.71 4- 
7 1.70 4- 
9 1.71 4- 

11 1.72 4- 

1 1.68 -4- 
3 1.70 4- 
5 1.80 4- 
7 1.95 =t= 
9 1.98 4- 
11 1.99+ 

1.70 4- 0.01 
1.69 -4- 0.01 

0.01 
0.01 
0.02 
0.01 

0.02 
0.01 
0.02 
0.01 
0.02 
0.01 
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I 

AF1 AF2 
200 lattice units 200 lat'6ce units 

AF3 AF4-5-6 

Fig. 4. Typical clusters of 3000 spins grown from an up spin as seed in various regions 
of the diagram of Fig. 3. 

to PT. From these, some physical processes can be derived and discussed below. 
Any magnetic field tends to enhance the effect of the positive coupling between 
spins because the field favours the growth of one spin species. In the fjords and 
channels, the motion is still brownian and on the neighbouring of the perimeter, 
the probability of sticking to the cluster is high. Furthemore the hot perimeter 
sites close to the launching circle are more favoured than internal ones [15, 16]. 
This easily explains the structure of MDLA clusters in the ferromagnetic part. 

However, in the antiferromagnetic part, the coupling and field effects are in 
greater conflict. This leads in this part of the phase diagram to a wider variety 
of processes and morphologies. When the field is not high enough to break the 
antiferromagnetic order (in the AF1 region), the coupling effect dominates the 
others: the process is closely-related to that which occurs in the ferromagnetic 
regions (F1 to F6). 
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Fig. 5. A branch of a Magnetically Controlled Diffusion-Limited Aggregation cluster 
grown in the AF2 region. The black and white dots represents down and up spins 
respectively. 

In AF2, the probabilities of gluing a spin on the cluster are different from 
AFI:  the probability of sticking on the t ip-perimeter sites is smaller than jump- 
ing to diffusing sites. Thus internal perimeter sites are more favoured by the 
AF2 growth process than tip ones. It results a thickening of the branches. 

In the AF3 region, the probability of sticking close to a spin of the same 
species oriented in the field is smM1. The diffusing spins wander a long time 
before freezing on the cluster. It is as if the whole surface is visited. Thus this 
leads to compact clusters. The Dr is 1.80 + 0.02 which is obviously a process 
and a value quite different from ordinary DLA. The computing times are here 
very long: decreasing flJ but staying in this region, we note very low sticking 
probabilities. 

In AF4 to AF6 regions, the field flH dominates the coupling flJ, the sticking 
probabilities are also smaller than diffusing ones. But sticking on the tip perime- 
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ter sites is more favourable than sticking on the other perimeter sites. This 
process is similar to Dielectric Breakdown [7, 17] and Eden Tree [14] models. 

4 P h y s i c a l  p r o p e r t i e s  o f  M D L A  c l u s t e r s  

The. magnetic analogy allows us to define the magnetization M of the growing 
clusters. M is defined by the difference between the number of up and down 
spins in the growing clusters. A non-zero magnetization means that  a species 
dominates the other in the formed pattern. In this section, we restrict our sim- 
ulations and discussion to particular cases where the external magnetic field 
is absent and the coupling between spins is positive (on the horizontal line of 
Fig. 3). 

Fig. 6 shows the magnetization M of clusters of 3000 spins as a function of 
the coupling between spins. The clusters have grown from an up-spin and in 

1.0 
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0.6 

X 
0.4 

0.2 

0.0 

I I I i ,  4 

• " "  I 

0.0 1.0 2.0 3.0 

13J 

@ 
6 e t  • [ ] 

4.0 5.0 

Fig .  6. Magnetization of MDLA clusters of 3000 spins grown without field from an 
up-spin as seed as function of the coupling flJ. 

absence of an external field. Each dot represents the average magnetization over 
80 clusters. The magnetization M is seen to increase rapidly from 0.0 to +1.0 
around/3Jc = 1.5 4-0.1. For a fixed mass S of the clusters, there exists a critical 
value (/3J)c above which the spin species of the seed dominates the other spin 
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species. The same behaviour with M ranging from 0.0 to -1.0 is found for cluster 
grown from a down spin as seed (not shown here). 

Moreover, the fractal dimension Df of the clusters were measured for the 
clusters simulated here above. Df was determined by the gyration radius method. 
Fig. 7 shows Df as a function of the coupling ranging from 0.0 to 5.0. Df is seen 

1.74 

1.72 

1.70 

1.68 

1.66 

II 
T 

I I = 

I r I I 

0.0 1.0 2.0 3.0 4.0 5.0 
6.] 

Fig. 7. Fractal dimension Df of MDLA clusters of 3000 spins grown without field from 
an up-spin as seed as function of the coupling/~J. 

to decrease slowly and continuously from 1.71-4-0.01 to 1.702-4-0.006; but  around 
~Jc, Df drops rapidly to 1.691 i 0.008. Fig. 8 shows three clusters of 3000 spins 
generated around and on/3Jc. The morphologies are not seen to vary drastically 
because the Df dropping is slight. One should note that  the cluster generated 
at /~J = 1.5 is more extended that the two others (it reaches the sides of the 
box of 200 lattice units size). This extension corresponds to a lower Df. The 
origin of this dropping of Df stays unclear: the theoretical models [19, 20] cannot 
explain such a behaviour at this time. The question "Why Df of the aggregates 
is dropping when one spin species began to dominate the other spin species?" 
remains also open. This particular case (fill - 0), illustrates also that  the growth 
processes are more complex than simply described by the diagram of Fig. 3. It 
is interesting to note that such a behaviour was also found in the MEM cluster 
where we have measured the magnetization the fractal dimension of one species 
(the species of the seed) [18]. 
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Fig. 8. Typical clusters grown from an up spin as seed without field around and o n  

the critical coupling flJ¢ = 1.5. 

5 C o n c l u s i o n  

In conclusion, the magnetic DLA (MDLA) model simulates the aggregation of 
particules with one internal degree of freedom taking here, as an example, two 
states, i.e. up and down. This generalization of DLA is physically and chemi- 
cMly relevant and leads to new competing growth processes and morphologies 
distributed here in 24 regions of a phase diagram of the growth parameters. The 
model allows one to give a systematic framework for many, sometimes apparently 
uncontrolled, extensions of kinetic growth models. 

The wide variety of magnetic growth processes and cluster types was not im- 
mediately expected, and is thus of great scientific interest. The fractal dimension 
Df takes different values ranging between 1.68 q- 0.02 and 1.99 =k 0.01 (nearly the 
dimension of the euclidian space which is 2) in the phase diagram. This connects 
geometrical fractals and thermodynamic fields. It is clear that Df continuously 
varies with the parameters as in the MEM [12]. Further simulations must explain 
how Df varies from a DLA process to a MDLA process. Boundary lines should 
be examined but this leads to 7 different cases which are not the scope of the 
present report. 

The magnetization M of the finite-size clusters shows that above a sufficient 
coupling value, a spin species dominates the other in the growing clusters. With- 
out external field, the dominating spin species is the seed one. More importantly, 
the fractal dimension Df of the aggregates drops at the same critical values. The 
origin of these transition behaviors remains unclear but one should note that 
the model is like a spreading and diffusing Ising droplet model. The transition 
behavior and its origin must still be explored by standard statistical physics 
methods. 
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The basic idea clearly opens the way to many new models and considerations, 
and to many applications in various fields. 
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A b s t r a c t .  Formulation of a truly advanced statistical theory of biochemical 
processes needs simple but adequate models of phenomena underlying micro- 
scopic dynamics of biomolecules, in particular enzYmatic proteins. A synthetic 
picture of microscopic dynamics of proteins emerging from the recent studies is 
outlined and two classes of theoretical models of slow conformational (activated) 
dynamics within protein native state, both of diffusion type, are described. In the 
first class, referred symbolically to as Protein-Glass, the dynamics is represented 
by diffusion of structural deflects in liquid-like region of protein of an effective 
dimension between 1 and 2, to be be approximated by various fractal lattices. 
In the second, Protein-Machine class of models the conformational dynamics is 
treated as a relative motion of solid-like fragments of secondary structure, also 
of the nature of quasicontinuous diffusion. It is presumably a rule that it is the 
process of conformational relaxation, and not the details of chemical mechanism, 
that affects the rate of biochemical processes. Under this assumption a particular 
Protein-Machine model is applied for constructing a theory of single enzymatic 
reaction. The important result obtained is that the reaction pathways close to 
and far from the chemical equilibrium can differ. A possibility is indicated of 
direct coupling among several reactions taking place at the same multienzyme 
complex. 

1 I n t r o d u c t i o n  

Any statistical theory of physical processes has to refer to simple models of 
phenomena underlying microscopic dynamics. The quality of models in use is, 
however, different in different fields of research. The theory of solid state, suc- 
cessfully exploiting a variety of models named after prominent physicists of 20th 
century from Debye, though Heisenberg, to Anderson, is an exemplary case. 
The theory of biochemical phenomena seems, unfortunately, to be the opposite 
extreme. Until recently, biochemists acted as if following the rule stating that 
what is not known, simply does not exist. The transition state theory, commonly 
used in interpretation of biochemical reactions [1], excluded the existence of any 
microscopic dynamics of biomolecules (in particular enzymatic proteins) more 
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complex than fast vibrations about a single well-defined equilibrium conforma- 
tion. 

This picture, adapted directly from chemistry of low-molecular weight com- 
pounds, has eventually proved untrue. Many experiments performed in the 1980s 
using various techniques demonstrate that within the protein native state, apart 
from usual vibrational dynamics, a rich interconformational (activated) dynam- 
ics exists in the whole range of time scales from 10-11 s to 10~s or more [2, 3]. 
The slowness of this dynamics makes any conventional theory of chemical reac- 
tions inapplicable for description of biomolecular processes [4]. A consequence is 
a challenge to physicists-theoreticians to construct a truly advanced statistical 
theory of biochemical processes based on still simple, but realistic models of mi- 
croscopic dynamics of proteins. In the present paper we describe two classes of 
such models~ both of diffusion type, symbolically referred to as Protein-Glass and 
Protein-Machine. A particular realization of the latter is applied for constructing 
a theory of single enzymatic reaction and to draw some general conclusions. 

2 P r o t e i n  d y n a m i c s  

Let us start with an outline of the main features of the picture of protein dynam- 
ics emerging from recent studies [3]. Proteins are linear polymers of amino acids 
(Figure 1). The fundamental structural unit of protein is a domain. It consists, 
on the average, of one hundred amino acids, thus has about 5 x 10 3 internal de- 
grees of freedom. These can be identified with covalent bond lengths and angles 
as well as dihedral angles of rotations about the bonds. It is the ability to such 
rotations (limited only to some degree by steric hindrances), combined with the 
possibility of hydrogen bond breaking and reforming, that makes the landscape 
of the potential energy of internal degrees of freedom extremely complex. A gen- 
eral feature of this landscape is the presence of an astronomical number (of an 
order of 10 l°° ) of local minima separated by higher or lower energy barriers of 
non-covalent nature. 

As in the stereochemistry of low-molecular weight organic compounds, the 
regions of microstates surrounding the local minima can be referred to as pro- 
tein stable conformations. In the first approximation, internal dynamics of pro- 
tein comprises vibrations within particular conformations and conformational 
transitions. The former are damped harmonic oscillations subjected accidentally 
to stochastic perturbations, whereas the latter are purely stochastic activated 
processes described by a set of master equations. The spectrum of vibrational 
periods ranges from 10-14s (weakly damped localized N-H or C-H stretching 
modes observed spectroscopically) to 10-11s (overdamped collective modes in- 
volving the whole domains, studied numerically). In physiological temperatures, 
the spectrum of relaxation times for conformational transitions begins at 10-11 s 
(local side chain rotations or hydrogen bond rearrangements on the protein sur- 
face). 

A characteristic feature of biologically active proteins in physiological condi- 
tions is their well-defined spatially folded structure. Protein folding is a process 
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Fig. 1. Chemical structure of protein. (a) The linear main chain. Subsequent amino 
acids with central carbon atoms C~ and characteristic side chains R~ are connected by 
covalent amide bonds O-C ' -N-H in the planar trans configuration. This configuration 
is stabilized by delocalization of bonding r-electrons, which is indicated with the help 
of broken lines. Notation of dihedral angles is shown. (b) Hydrogen bonds between 
amide groups of the main chain. 

of discontinuous phase-transition type, independent for each domain, thus all 
part icular  conformations in physiological conditions are to be divided uniquely 
between the native (folded) and unfolded state. The mean waiting-time of fold-  
ing is within the range 10 -1 - 10 2 s and the mean waiting-time of spontaneous 
unfolding should be longer than that  as many times as the equilibrium concen- 
t ra t ion of the native state is higher than the equilibrium concentration of the 
unfolded state. A careful estimation provides for this t ime a value within the 
range 10 3 - 1011 s and this is the upper limit of the relaxation t ime spect rum of 
protein conformational transitions. 

As we have stated in Introduction, a great achievement of the 'physics  of 
proteins in the past  two decades is demonstrat ion of the existence of a rich 
interconformational (activated) dynamics within the native state of protein. The 
t ime scale of this dynamics observed with the help of various techniques is given 
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in Figure 2. Conformational transitions take place not in the whole bulk of the 
domain, but are limited to liquid-like regions surrounding solid-like fragments 
of secondary structure (a-helices or fl-pleated sheets) surviving, in physiological 
conditions, the transition to the unfolded state. It is not easy to infer the actual 
nature of conformational dynamics from experimental data. Figure 2 indicates 
that conformational transitions occur within the whole time scale from 10-11s 
to 105s or more, but we do not know how numerous is, in fact, the population 
of conformations composing the native state. From this point of view numerical 
simulation results appear important ,  pointing directly to the existence of the 
whole quasi-continuum of short-lived conformations within the native state [5, 6]. 
There is no reason to doubt that also longer-lived conformations form some 
kind of a quasi-continuum. In Figure 3, this view is illustrated as the outline of 
the spectra of reciprocal relaxation times of protein conformational dynamics, 
separately in the unfolded and the native state. 

10 -1] 10 -7 10 -3 10 
I I I I I I I I I f I I I 

i 9 D 

NMR: relaxation param. NMR: inhomogeneity of lines 

fluorescence depolarization & quenching 

~- 9 D 

MSssbauer spectroscopy patch clamp technique 

9 

neutron scatt, kinetics: flash & relaxation techniques 

numerical simulations 

] 0  5 S 

I I I I 

4 

hydrogen exchange 

Fig. 2. Time scale of conformational transitions within the protein native state ob- 
served with the help of various experimental techniques (after Ref. 3). Time period 
10 -11 s at one edge of the spectrum characterizes localized conformational transitions 
on the protein surface. Time period 105 s at the other edge is a (rather underestimated) 
value of the waiting-time for spontaneous unfolding of ~he protein in physiological con- 
ditions. Note that typical reciprocal turnover number of enzymatic reactions, 10 -3 s, 
is exactly in the middle of the scale. 

3 T h e o r e t i c a l  m o d e l s  o f  c o n f o r m a t i o n a l  d y n a m i c s  

Because the experiments at hand cannot elucidate the nature of conformational 
dynamics in detail, the problem is to some extent left open to speculation. In 
two classes of models provided hitherto by literature the speculative element 
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Fig. 3. Fig. 3. Schematic spectra of reciprocal relaxation times of conformational dy- 
namics within the unfolded (U) and the native (N) state of protein domain in physi- 
ological conditions. The ground zero level (infite relaxation time) corresponds to the 
sum of probabilities of all the conformational states preserved. Indicated are rates of 
spontaneous folding (,.~ 1 s- l ) ,  unfolding (,,~ 10 -5 s- l ) ,  and the typical rate of enzy- 
matic reaction (~ 103s-1). Our discussion implies that biochemical processes are not 
separated in time scale from the processes of conformational relaxation. This view 
contradicts the conventional belief claiming that the spectrum of reciprocal relaxation 
times within the protein native state looks rather like the scheme to the most right. 

seems to be kept within reasonable limits. We shall refer to them symbolically as 
Protein-Glass and Protein-Machine. In essence, the question concerns the form 
of the relaxation t ime spectrum of a set of conformational master  equations. 
As mentioned in the previous section, this spectrum is not expected to have a 
well-defined t ime scale separation. The simplest way to tackle such problems is 
to assume that  the dynamics of a system looks alike in every t ime scale, i.e., the 
spec t rum of relaxation times has a self-similarity symmetry.  This assumption 
is the core of any Protein-Glass model (Figure 4(a)). An alternative makes the 
Protein-Machine class of models in which the variety of conformations composing 
the native state is supposed to be labelled with only a few "mechanical" variables. 
The reciprocal relaxation time spectrum is then a sum of several more or less 
equ!distant subspectra (Figure 4(b)). Let us say a few more words about  each 
class of models. 

Protein-Glass. Time scaling, considered to be a generic property of glassy 
materials,  originates either from a hierarchy of barrier heights in the potential  
energy landscape, or from a hierarchy of "bottlenecks'in the network joining 
conformations between which direct transitions take place [7]. A hierarchy of 
interconformational barrier heights was proposed ten years ago by Frauenfelder 
and coworkers in order to combine the results of various experiments concerning 
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Fig. 4. Schematic spectra of reciprocal relaxation times of conformational dynamics 
within the native state of protein. (a) Protein-Glass model: spectrum looks approxi- 
mately alike in several subsequent time scales. (b) Protein-Machine model: spectrum 
consists of a few more or less equidistant sub-spectra. 

the process of ligand binding to myoglobin [2]. The reasonable mathematical  
realization of such a hierarchy in the context of its application to proteins are 
spin glasses [8]. The mathematical realization, on the other hand, of hierarchical 
networks are lattices with the effective dimension between 1 and 2, e.g. geomet- 
rical fractals (Figure 5(a)) or the percolation clusters (Figure 5 (b)). The latter 
have been already applied to describe dynamics of protein [9]. The process of 
diffusion on fractal lattices simulates structural defect motions in the liquid-like 
regions between solid-like fragments of secondary structure. 

Prote in-Machine  model was proposed more than twenty ago by a group of 
Moscow biophysicists assembled around Chernavsky [10] and Blumenfeld [11]. 
Speculative at the origin, the model becames presently better and better ex- 
perimentally justified [12]. In the simplest case, the mechanical variables can 
be identified with angles describing the mutual orientation of rigid fragments of 
secondary structure (a-helices or fl-pteated sheets). In the continuum limit, sub- 
sequent conformational transitions along a given mechanical coordinate are to 
be approximated by diffusion in an effective potential, parabolic at the simplest 
[13-15]. It is worth noting that identical mathematical equations describe over- 
damped collective vibrations of domains, moreover, numerical analysis indicates 
that  also they take the form of mutual motions of relatively rigid fragments of 
secondary structure. 

Each of the presented classes of models may be true to some extent but, 
in the author's opinion, the Protein-Machine type approach seems to be more 
universal. The Protein-Glass models behave unrealistically both in the limit of 
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(a) 

(b) 

Fig. 5. Examples of hierarchical lattices with the fract~l dimension between 1 and 2. 
(a) Sierpifiski gasket. (b) Percolation cluster. 
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very short and very long times, and in practice should be restricted only to a few 
levels of hierarchy [2]. However, a finite hierarchy can occur also in the Protein- 
Machine models, if one identifies mechanical elements, first, with some chosen 
side chains, next, with the fragments of secondary structure and, in the end, with 
the whole domains. Important  is also that there is no essential difference between 
conformational transitions along the mechanical coordinates and overdamped 
collective vibrations, and that the cross-over between both types of motion is 
more or less a mat ter  of convention. 

4 P r o t e i n - M a c h i n e  m o d e l  of a s ingle  e n z y m a t i c  react ion  

Conventional biochemistry, like ordinary chemistry of low-molecular weight com- 
pounds, does not distinguish, in general, between the kinetic and the chemical 
mechanism of reaction [1]. Thus, the reaction involving a single covalent step 

R ~ > P 

is modelled by the three-step kinetics of Haldane, given in Figure 6(a), with only 
two association-dissociation steps added. 

(a) 

ER ~" ~" EP 

R E P 

(b) 

ERi : : EP, 

~R Ei P 
ERj -~--l--~ EPy 

R Ej P 

(c) 

Fig. 6. Single enzymatic reaction. (a) Conventional kinetics. (b) Actual kinetics in- 
volving a quasi-continuous set of conformations of the enzyme or its complexes la- 
belled with indices i and 3". (c) Protein-Machine model. Dynamics of conformational 
transitions within each of the three chemical species E, ER and EP is approximated 
by diffusion along a mechanical coordinate. Perpendicular chemical transitions are in 
general reversible; the arrows indicate only the signs of the corresponding components 
of local reaction rates (3). 
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A typical rate of enzymatic reaction is 10 3 s -1 . In the conventional biochem- 
istry this reaction is assumed to be well separated in the time scale from other 
processes. But at present we know that this is not true: conformational relax- 
ation within the native state of protein is as slow, if no slower, as the reaction 
(Figures 2 and 3). Certainly, some conformational transitions are independent 
of the reaction but others must affect the latter in a way. In consequence, to 
describe the actual kinetic mechanism of enzymatic reaction one has to treat 
conformational (non-covalent) transitions on an equal footing with the chemical 
(covalent) transformations. The resultant scheme for the enzymatic reaction in- 
volving a single covalent step is infinitely more complex than the conventional 
scheme [4]. It is shown in Figure 6(5). 

i t  is obvious that,  on the phenomenological level, a scheme like that  in Figure 
6(b) is operationally useless as one cannot distinguish (and prepare) so many 
species, and no detailed investigation of the reaction time course can verify it. 
As in the conventional approach, the process should be described phenomeno- 
logically in terms of equations for concentrations of a few observable species: 
E, EI~ and EP. The problem of formulating reasonable approximations of those 
equations is highly non-trivial. In the following we present a partial solution to 
this problem, based on a particular Protein-Machine model of conformational 
dynamics [12, 15]. 

In the Protein-Machine model considered, dynamics of conformational tran- 
sitions within each of the three chemical species is approximated by diffusion 
along a mechanical coordinate z in some effective parabolic potential. Chemical 
transitions are perpendicular to this coordinate, thus the complete dynamics of 
enzyme is described by a set of three coupled partial differential equations for 
probability densities p~(x, t) (i = 0, 1, 2 for E, ER and EP, respectively): 

0 0 .  
~-~pi = - ~---~z 3i + wi, (1) 

with diffusion fluxes 
[ 1 0  ] 

J i = - 7  20-~x + ( x - x i )  Pi, 

and local reaction rates 

W 0 -~- - - W  I "~- W II, W 1 : - - W  ~ -  W I,  W 2 : W - -  W II 

(2) 

(3) 
(compare Figure 6(c)). The dimensionless mechanical variable x, proportional 
to x/-k~, is normalized in such a way that its equilibrium dispersion is 1/2; xi's 
are positions of minima of the conformational potential in individual chemical 
species, and the parameter 3' has a meaning of the reciprocal relaxation time 
of the mean value of the mechanical variable. We assume that  the chemical 
transitions are localized in narrow regions of the values of this variable: 

w(x)  o (n5(z ) ,  w ' ( z )  c~ n '5(z  - z'),  w"(x )  c~ n"5(x  - z" )  (4) 

(the reaction is gated by conformational dynamics). We assume also that  local 
chemical transitions are much faster than conformational diffusion: 

~, ~', x" >> 3'. (5) 
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This assumption is quite natural if we recall that conformational relaxation 
within the native state of enzyme is as fast as the very reaction so that  it is 
this relaxation that determines the resultant reaction rate and not the detMls of 
chemical mechanism. An important consequence of this assumption is a different 
path of the reaction close to and far from the equilibrium. 

Close to the thermodynamic equilibrium the reciprocal chemical relaxation 
time is given by the formula: 

2 

_ "r V/-~*,/kT exp(-,~C~/kT), ~~q' = 2 ~  ~ (1 - c:~) 
i = 0  

(6) 

where C~ q, i = 0, 1, 2, are equilibrium molar fractions of chemical species E, 

ER and EP, respectively, and AG~ are values of the free energy that  have to 
be reached within particular species in order to reach the nearest gate from the 
equilibrium conformation xi (see Figure 7). 

EP 

X' 

R J 

E 

X0 

V 
A 

X1 

Fig. 7. Protein-Machine model of a single enzymatic reaction (compare Figure 6(c)). 
Three different conformational potentials with minima at x0, zl and z2 correspond to 
individual chemical states E, ER and EP, respectively, of the enzyme. Three chemical 
transitions are localized at the points 0, x ~ and x ' .  
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Equatio~ (6) has the meaning of the average reciprocal time of diffusion 
uphill the conformational potential from its minimum, provided, however, that  
AG~ >> kT. Quite generally, time of difusion from z'  to z '' in the potential z 2 
(in k T  units) is given by the formula 

XH f r(x'---~x") = 27 -1 / dy e ~2 dx e -x2. (7) 
3~ ! O 0  

In Figure 8 diffusion times uphill and downhill the potential are plotted vs the 
distance x in the logarithmic scale. It is seen that diffusion uphill can be several 
orders of magnitude slower than diffusion downhill, taking place in the time of 
the order of 7 -1 . 

10 4 

P 

10  ~ 

10 2 

10 

I0 

~(~.o) 

i0 ~ 

-d.o'  ' -~.0 '  '-~.o 'o.o '2.b z '4.b 

Fig. 8. Diffusion time uphill, r(0--~ x), and downhill, 7-(x---~ 0), the potential z 2. Time 
is counted in characteristic diffusion time units 7 -1. Dimensionless coordinate x is 
proportional to x,/kT. 

On examining Figure 7 we find that after transition at the point x' from 
the state E + R to ER, the enzyme can either equilibrate within ER or pass 
directly to the next state EP, or even E + R, with the process of equilibration 
omitted. As a consequence, in the case discussed, direct reactions between each, 
in general, pair of kinetic states are possible [4]. The chemical relaxation time 
(6) determines rate constants occurring in such a generalized scheme. 

No partial  equilibration within any kinetic species is necessery if the enzy- 
matic reaction proceeds far from the chemical equilibrium. In steady state con- 
ditions with the concentration of reactant kept constant, [R] = const, and with 
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the constant removal of product, [P] = 0, the rate of the reaction is described 
(as in the conventional approach) by the Michaelis-Menten law: 

[p] _ k~[a] 
Km + [a]' (8) 

with the reciprocal turnover number 

k:  1 = + 0) +  2(0 

+(c~q/c~ q) [r~ (0 --+ z") + r~ @"-+ 0)], (9) 

and the apparent dissociation constant 

Km= ko[a] °q [rl(X'  0) + n(0-* x')] 
+(c~q/c~ q) [r2(0 ---* x") + T2 (x"--+ 0)]} (10) 

vi denoting diffusion time in the potential of i-th species with the minimum at 
xi. Note independence of kc of the chemical relaxation time near equilibrium 
req , Equation (6). 

The theory presented gives a rule of the optimum action of enzyme: turn- 
over number kc is maximum, if conformational diffusion within free enzyme E 
is downhill, and the transition points x = 0, x', x" lie not very far from each 
other. In that case k¢ "" 7 >> req 1. Of course the backward reaction along 
the same path in steady state conditions should be much slower, but the latter 
reaction, in Protein-Machine model, can proceed along another path it finds 
more convenient. 

5 C o n c l u d i n g  r e m a r k s  

Great progress in the studies of protein dynamics in the 1980s propels an essen- 
tial alteration in our understanding of the enzymatic catalysis phenomenon. The 
simple classical statement: "enzymes accelerate reactions by decreasing the free 
energy of activation" represents only half of the truth. We do not deny enzymatic 
reactions to proceed through gates of relatively low free energy. These gates can 
have either the character of transient packing defects giving free space for sub- 
strate motions, or that of local polarization fluctuations facilitating displacement 
of charges during the very covalent act. However, because of the slowness of con- 
formational relaxation it is usually not the process of gate crossing that limits 
the reaction rate, but the process of gate opening. 

In Figure 9, the presumably universal statistically independent unit of bio- 
chemical processes, a supramolecular multienzyme complex [16], is outlined. From 
the dynamical point of view essential is a distinction within its body between 
solid-like fragments of secondary structure (a-helices or fl-pleated sheets) and 
liquid-like surrounding regions, either nonpolar (domain interiors, lipid mem- 
brane environment), or polar ones ("channels" between domains, water envi- 
ronment). The complex, of the size of approximately 30 nm, is too large to 
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be described in terms of microscopic mechanics of individual atoms, and too 
inhomogeneous to be described in terms of macroscopic thermodynamics.  The 
proper language is the mesoscopic theory of stochastic processes. Both consid- 
ered classes of models of conformational dynamics use such a language. Mod- 
els of Protein-Glass type treat the dynamics of conformational transitions as a 
quasicontinuous diffusion of structurM defects through the liquid-like medium. 
Alternatively, models of Protein-Machine type treat this dynamics as a relative 
motion of solid-like elements, also of the nature of quasicontinuous diffusion. 
Slow diffusion dynamics controls all, in principle, reactions that  take place in 
localized catalytic centers. 

Fig. 9. Schematic cross-section of the universal statistically independent unit of 
biochemical processes, a supramolecular multienzyme complex. Heavily shaded are 
solid-like fragments of secondary structures, medium shaded are nonpolar liquid-like 
regions, and weakly shaded are polar liquid-like regions. Black are individual catalytic 
centers usualy localized at two neighbouring solid-like elements. 
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The picture presented contradicts the conventional outlook, following which 
the complex consists of several component macromolecules, each occurring only 
in a few discrete chemical or conformational states. The corresponding dynamics 
is also a stochastic process, however, not of a quasicontinuous diffusion type, but 
the jump one, of all-or-nothing type. Both close to and far from the total ther- 
modynamic equilibrium, kinetic transformations take place only after reaching 
partial equilibrium within individual kinetic states. 

Slow diffusive dynamics, on the contrary, results in different pathways of en- 
zymatic reaction close to and far from the equilibrium. Close to the equilibrium, 
equations of conventional kinetics are valid, possibly corrected for direct com- 
ponent reactions. In the steady state conditions far from the equilibrium, the 
thermodynamic variables proper for description of chemical processes are not 
concentrations of chemical species, but rather quantities characterizing confor- 
mational nonequilibrium of the enzyme, for instance mean values of mechanical 
variables. The turnover number of enzyme is not related to reaction rate con- 
stants close to the equilibrium. This was suggested already twenty years ago by 
Blumenfeld [11], whose ideas influencened the author of this paper very strongly. 
Note, that the new approach changes the interpretation but leaves the phe- 
nomenology essentially unaltered, so only evident demonstration of the lack of 
this relation could be the experimentum crucis directly proving the conventional 
interpretation wrong. 

The conformational nonequilibrium should play an extremely important role 
in the process of coupling of several reactions taking place at the same multien- 
zyme complex. In processes of this type the biological free energy transduction is 
carried out at the cellural level. In the conventional mechanism of chemical cou- 
pling the complex is needed only for keeping the appropiately high concentration 
of intermediates. The conformational nonequilibrium implies the possibility of 
different, mechanical coupling of reactions, upon which energy released in the 
center of one reaction is directly transferred to the center of another reaction. 
In this field, theoretical studies are, unfortunately, at the beginning stage. 
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